Data sheet Cisco public

Cisco Catalyst 9130 Series Access Points

Contents

Resilient - steady performance in demanding environments	5
Secure infrastructure	6
Aesthetically redesigned for the next-generation enterprise	6
Cisco DNA support	6
Product specifications	7
Packaging	42
Warranty information	43
Cisco environmental sustainability	43
Cisco Services	43
Cisco Capital	44

The Cisco® Catalyst® 9130 Series Access Points are the next generation of enterprise access points. They are resilient, secure, and intelligent.

With the emergence of high-density networks and the Internet of Things (IoT), we are more dependent on wireless networks than ever before. Increasing numbers of devices connect to the network every year, ranging from high-performance client devices to low-bandwidth IoT devices. Cisco Catalyst 9130 Series Access Points provide a seamless experience anywhere for everyone, with high scaling and unmatched performance in diverse network deployments. Going beyond the Wi-Fi 6 (802.11 ax) standard, the 9130 Series provides integrated security, resiliency, and operational flexibility as well as increased network intelligence.

Extending Cisco's intent-based network and perfect for networks of all sizes, the Cisco Catalyst 9130 Series scales to meet the growing demands of IoT while fully supporting the latest innovations and new technologies. The 9130 Series is also a leader in performance, security, and analytics.

The Cisco Catalyst 9130 Series Access Points, paired with the Cisco Digital Network Architecture (Cisco DNA), are enterprise-class products that will address both your current and future needs. They are the first step in updating your network to take better advantage of all of the features and benefits that Wi-Fi 6 provides.

Key features:

- Wi-Fi 6 certified, supporting 802.11ax on both 2.4GHz and 5GHz bands
- Up to four Wi-Fi radios: 5GHz flexible radio (single 8x8 or dual 4x4), 2.4GHz (4x4) and Cisco RF ASIC
- OFDMA and MU-MIMO
- Multigigabit support
- Internal and external antenna

Future feature support:

• IoT ready (BLE, other 802.15.4 protocols** like Zigbee)

The Cisco Catalyst 9130 Series Access Points support both Orthogonal Frequency-Division Multiple Access (OFDMA) and multiuser multiple input, multiple output (MU-MIMO), delivering more predictable performance for advanced applications and IoT. Additionally, with up to 5 Gbps and NBASE-T and IEEE 802.3bz Ethernet compatibility, the 9130 Series can seamlessly offload network traffic without any bottlenecks. With Cisco's Multigigabit technology, you can use your existing Category 5e or 6 cabling to achieve speeds up to 5 Gbps, allowing for higher throughputs with minimum cost. And with multiple antenna options, you can choose the one that works best for you.

Table 1. Features and benefits

Feature	Benefits
Wi-Fi 6 (802.11ax)	The IEEE 802.11ax emerging standard, also known as High-Efficiency Wireless (HEW) or Wi-Fi 6, builds on 802.11ac. It delivers a better experience in typical environments with more predictable performance for advanced applications such as 4K or 8K video, high-density, high-definition collaboration apps, all-wireless offices, and IoT. Wi-Fi 6 is designed to use both the 2.4-Ghz and 5-GHz bands, unlike the 802.11ac standard.
Cisco RF ASIC	The Cisco RF Application–Specific Integrated Circuit (ASIC) is a fully integrated Software–Defined Radio (SDR) that can perform advanced RF spectrum analysis and delivers features such as Cisco CleanAir®, Wireless Intrusion Prevention System (WIPS), FastLocate*, and Dynamic Frequency Selection (DFS) detection. (* Future)
Uplink/downlink OFDMA	OFDMA-based scheduling splits the bandwidth into smaller frequency allocations called Resource Units (RUs), which can be assigned to individual clients in both the downlink and uplink directions to reduce overhead and latency.
Uplink/downlink MU-MIMO technology	Supporting eight spatial streams, MU-MIMO enables access points to split spatial streams between client devices to maximize throughput.
BSS coloring	Spatial reuse (also known as Basic Service Set [BSS] coloring) allows the access points and their clients to differentiate between BSSs, thus permitting more simultaneous transmissions.
Target Wake Time	A new power-saving mode called Target Wake Time (TWT) allows the client to stay asleep and to wake up only at prescheduled (target) times to exchange data with the access point. This offers significant energy savings for battery-operated devices, up to 3x to 4x the savings achieved by 802.11n and 802.11ac.
Intelligent Capture	Intelligent Capture probes the network and provides Cisco DNA Center with deep analysis. The software can track more than 240 anomalies and instantaneously review all packets on demand, emulating the onsite network administrator. Intelligent Capture allows for more informed decisions on your wireless networks.

^{** -} Supported in future software releases

Feature	Benefits
Flexible Radio Assignment (FRA) with tri-radio mode	FRA allows the access points to intelligently determine the operating mode of serving radios based on the RF environment and traffic demands. The access points can operate in the following modes: • Dual radio mode: one 8x8 5 GHz and one 4x4 2.4 GHz. One radio will serve clients on 5 GHz band, while the other serves clients on 2.4 GHz band.
	 Tri-radio mode*: dual 4x4 5 GHz and one 4x4 2.4GHz. With two 4x4 5 GHz and one 4x4 2.4 GHz radios (tri-radio) inside the access point, client device capacity can be increased on demand.
	 The access point's default mode is dual radio with 8x8 5 GHz and 4x4 2.4 GHz. It has the ability to split the 8x8 radio into two separate 4x4 5-GHz radios through software, thereby enabling the benefits of FRA while allowing the 2.4-GHz radio to remain active.
Industry first 8x8 external antenna access point with Smart antenna connector	Cisco Catalyst 9130 Series is the first in the industry to provide 8x8 radio architecture with external antennas. Additionally these antennas can also be split into a dual 4x4 radio architecture. An intelligent physical antenna connector is included on the Cisco Catalyst 9130 Series Access Points with an external antenna. This connector provides advanced network design flexibility for high-density and large open-area environments such as auditoriums, convention centers, libraries, cafeterias, and arenas/stadiums.
Cisco Embedded Wireless Controller (EWC)	Embedded Wireless Controller on Catalyst 9130 Access Points is designed for networks of all sizes, including small and medium-sized businesses and distributed enterprises. It provides industry-leading wireless LAN technology without the need for a physical wireless controller.
Multigigabit Ethernet support	Multigigabit Ethernet provides uplink speeds of 5 Gbps and 2.5 Gbps, in addition to 100 Mbps and 1 Gbps. All speeds are supported on Category 5e cabling, as well as 10GBASE-T (IEEE 802.3bz) cabling.
Bluetooth 5	Integrated Bluetooth Low Energy (BLE) 5 radio enables location-based use cases such as asset tracking, wayfinding or analytics.
Container support for applications	Container support enables edge computing capabilities for IoT applications on the host access point.
Apple features	Apple and Cisco have partnered to create an optimal mobile experience for iOS devices on corporate networks based on Cisco technologies. Using new features in Apple iOS, in combination with the latest software and hardware from Cisco, businesses can now more effectively use their network infrastructure to deliver an enhanced user experience across all business applications.
	At the center of the collaboration is a unique handshake between the Cisco WLAN and Apple devices. This handshake enables the Cisco WLAN to provide an optimal Wi-Fi roaming experience to Apple devices. Additionally, the Cisco WLAN trusts Apple devices and gives priority treatment for business-critical applications specified by the Apple device. This feature is also known as Fast Lane.

Note: The following features will be available in a future release: Intelligent Capture, Tri-radio mode, Uplink MU-MIMO, and Container support for applications.

Resilient – steady performance in demanding environments

Network infrastructures that are upgraded to Wi-Fi 6-enabled devices will get up to four times the capacity boost needed to support the additional devices connected to the network as well as the data they generate. Wi-Fi 6 will offer multigigabit performance that will feature seamless connectivity with higher throughput compared to the Wi-Fi 5 (802.11ac) standard. This means that your network will run more

smoothly. With support for BSS coloring, the new standard eases high-density device deployments by allowing simultaneous transmissions, ultimately increasing network capacity, customer interactions, and value-add services. BSS coloring allows the limited channels in the 2.4 GHz band to have better spectral reuse, benefiting IoT and other 2.4 GHz clients.

Wi-Fi 6, with better coordination of transit time to and from devices, will also bring about a reduction in latency and greater reliability, allowing for hundreds of devices per access point. This will enable IoT devices to be reliably deployed at scale. In addition, Wi-Fi 6 will reduce the battery consumption in devices such as smartphones, tablets, and IoT devices when compared to previous standards. For more details about Wi-Fi 6, see <u>Cisco's technical white paper</u> on Wi-Fi 6.

Secure infrastructure

Trustworthy systems built with Cisco Trust Anchor Technologies provide a highly secure foundation for Cisco products. With the Cisco Catalyst 9100 Access Points, these technologies enable assurance of hardware and software authenticity for supply chain trust and strong defense against man-in-the-middle attacks that compromise software and firmware. Trust Anchor capabilities include:

- **Image signing:** Cryptographically signed images provide assurance that the firmware, BIOS, and other software components are authentic and unmodified. As the system boots, the system's software signatures are checked for integrity.
- Secure Boot: Cisco Secure Boot technology anchors the boot sequence chain of trust to immutable
 hardware, mitigating threats against a system's foundational state and the software being loaded,
 regardless of a user's privilege level. It provides layered protection against illicitly modified
 firmware.
- Cisco Trust Anchor module: A tamper-resistant, strong cryptographic, single-chip solution
 uniquely identifies the product so that its origin can be confirmed to Cisco. This provides assurance
 that the product is genuine.

Aesthetically redesigned for the next-generation enterprise

The Cisco Catalyst 9100 Access Points are built from the ground up, with a new clean look and a smooth finish, integrating RF excellence and next-generation technologies to provide a best-in-class wireless experience without compromise. In addition to incorporating several new high-performance features, the hardware has been redesigned to deliver greater efficiency in a more compact form factor for visually appealing Wi-Fi deployments.

Cisco DNA support

Pairing the Cisco Catalyst 9130 Series Access Points with Cisco DNA allows for a total network transformation. Cisco DNA allows you to truly understand your network with real-time analytics, quickly detect and contain security threats, and easily provide networkwide consistency through automation and virtualization.

Cisco DNA with Software-Defined Access (SD-Access) is the network fabric that powers business. It is an open and extensible, software-driven architecture that accelerates and simplifies your enterprise network operations. The programmable architecture frees your IT staff from time-consuming, repetitive network configuration tasks so they can focus instead on innovation that positively transforms your business. By decoupling network functions from the hardware, you can build and manage your entire wired and wireless

network from a single user interface. SD-Access enables policy-based automation from edge to cloud with foundational capabilities. These include:

- Simplified device deployment
- · Unified management of wired and wireless networks
- · Network virtualization and segmentation
- Group-based policies
- · Context-based analytics

The Cisco Catalyst 9130 Series Access Points support SD-Access, Cisco's leading enterprise architecture.

Working together, the Cisco Catalyst 9130 Series and Cisco DNA offer such features as:

- Cisco DNA Spaces
- Cisco Identity Services Engine
- · Cisco DNA Analytics and Assurance

The result? Your network stays relevant, becomes digital ready, and is the lifeblood of your organization.

Product specifications

Item	Specification
Part numbers	Cisco Catalyst 9130AX Access Point: Indoor environments, with internal antennas • C9130AXI-x: Cisco Catalyst 9130 Series
	Cisco Catalyst 9130AX Access Point: Challenging indoor environments, with external antennas • C9130AXE-x: Cisco Catalyst 9130 Series
	Regulatory domains: (x = regulatory domain)
	Customers are responsible for verifying approval for use in their individual countries. To verify approval and to identify the regulatory domain that corresponds to a particular country, visit https://www.cisco.com/go/aironet/compliance .
	Not all regulatory domains have been approved. As they are approved, the part numbers will be available on the Global Price List and/or regional price lists.
	Cisco Wireless LAN Services
	AS-WLAN-CNSLT: <u>Cisco Wireless LAN Network Planning and Design Service</u>
	AS-WLAN-CNSLT: <u>Cisco Wireless LAN 802.11n Migration Service</u>
	AS-WLAN-CNSLT: <u>Cisco Wireless LAN Performance and Security Assessment Service</u>
Software	Catalyst 9130 AXI Cisco Unified Wireless Network Software Release 8.10.x or later Cisco IOS® XE Software Release 16.12.1 with AP Device Pack, or later
	Catalyst 9130AXE • Cisco Unified Wireless Network Software Release 8.10MR1 or later • Cisco IOS® XE Software Release 17.1.1 s or later
Supported wireless LAN controllers	 Cisco Catalyst 9800 Series Wireless Controllers Cisco 3504, 5520, and 8540 Wireless Controllers and Cisco Virtual Wireless Controller

Item	Specification
802.11n version 2.0 (and related) capabilities	 4x4 MIMO with four spatial streams Maximal Ratio Combining (MRC) 802.11n and 802.11a/g 20- and 40-MHz channels PHY data rates up to 1.5 Gbps (40 MHz with 5 GHz and 20 MHz with 2.4 GHz) Packet aggregation: Aggregate MAC Protocol Data Unit (A-MPDU) (transmit and receive), Aggregate MAC Service Data Unit (A-MSDU) (transmit and receive) 802.11 Dynamic Frequency Selection (DFS) Cyclic Shift Diversity (CSD) support
802.11ac	 8x8 downlink MU-MIMO with eight spatial streams MRC 802.11ac beamforming 20-, 40-, 80-, and 160-MHz channels PHY data rates up to 6.9 Gbps (160 MHz with 5 GHz) Packet aggregation: A-MPDU (transmit and receive), A-MSDU (transmit and receive) 802.11 DFS CSD support WPA3 support
802.11ax	 8x8 uplink/downlink MU-MIMO with eight spatial streams Uplink/downlink OFDMA TWT BSS coloring MRC 802.11ax beamforming 20-, 40-, 80-, and 160-MHz channels PHY data rates up to 10 Gbps (160 MHz with 5 GHz and 20 MHz with 2.4 GHz) Packet aggregation: A-MPDU (transmit and receive), A-MSDU (transmit and receive) 802.11 DFS CSD support WPA3 support
Integrated antenna	 2.4 GHz: Peak gain 4 dBi, internal antenna, omnidirectional in azimuth 5 GHz: Peak gain 6 dBi, internal antenna, omnidirectional in azimuth
External antenna with Smart antenna connector	 The Cisco Catalyst 9130AXE Access Points are certified for use with antenna gains up to 13 dBi (2.4 GHz and 5 GHz) Cisco offers the industry's broadest selection of antennas, delivering optimal coverage for a variety of deployment scenarios Supports Self-Identifiable Antennas (SIA) on the Smart antenna connector Smart antenna connector is a compact multi-RF connector with 8-DART interface Requires the AIR-CAB-002-D8-R= 2-fppt smart antenna connector when used with antennas with a RP-TNC connector Requires the AIR-CAB-003-D8-N= 3 ft smart antenna connector when used with AIR-ANT2513P4M-N= antenna

Item	Specification										
Interfaces	Management c	 1x 100, 1000, 2500, 5000 Multigigabit Ethernet (RJ-45) - IEEE 802.3az Management console port (RJ-45) USB 2.0 at 4.5W (enabled via future software) 									
Indicators	Status LED indi loader errors	Status LED indicates boot loader status, association status, operating status, boot loader warnings, and boot loader errors									
Dimensions (W x L x H)	。 C9130AXI: 8										
Weight	• 3.2 lb. (1.45 kg	Cisco Catalyst 9130AXI • 3.2 lb. (1.45 kg) Cisco Catalyst 9130AXE • 3.78 lb. (1.71 kg)									
Input power requirements	Cisco power in802.3af PoE	 802.3at Power over Ethernet Plus (PoE+), Cisco Universal PoE (Cisco UPOE®) Cisco power injector, AIR-PWRINJ6= 802.3af PoE Cisco power injector, AIR-PWRINJ5= (Note: This injector supports only 802.3af) 									
	Catalyst 9130A	Catalyst 9130AXI									
	PoE power consumption	2.4-GHz radio	5-GHz radio	Link speed	USB	Link Layer Discovery Protocol (LLDP)					
	802.3at (PoE+)	4x4	8x8	5G	N	25.5W					
	802.3at (PoE+)	4x4	4x4	5G	Y [4.5W]	25.5W					
	802.3bt (Cisco UPOE)	4x4	8x8	5G	Y [4.5W]	30.5W					
	Cisco Catalyst	9130AXE									
	PoE power consumption	2.4-GHz radio	5-GHz radio	Link speed	USB	LLDP					
	802.3at (PoE+)	4x4	8x8	5G	N	25.5W					
	802.3at (PoE+)	4x4	4x4	5G	Y [4.5W]	25.5W					
	802.3bt (Cisco UPOE)	4x4	8x8	5G	Y [4.5W]	30.5W					
	Cisco Catalyst	9130AXI and 913	BOAXE								
	PoE power consumption	2.4-GHz radio	5-GHz radio	Link speed	USB	LLDP					
	802.3af PoE	1x1	1x1	1G	N	13.4W					

Item	Specification					
Environmental	Cisco Catalyst 9130AXI Nonoperating (storage) temperature: -22° to 158°F (-30° to 70°C) Nonoperating (storage) altitude test: 25°C, 15,000 ft (4600 m) Operating temperature: 32° to 122°F (0° to 50°C) Operating humidity: 10% to 90% (noncondensing) Operating altitude test: 40°C, 9843 ft (3000 m) Note: When the ambient operating temperature exceeds 40°C, the access point will shift from 8x8 to 4x4 on the 5 GHz radio, uplink Ethernet will downgrade to 1 Gigabit Ethernet; however, the USB interface will remain enabled. Cisco Catalyst 9130AXE Nonoperating (storage) temperature: -22° to 158°F (-30° to 70°C) Nonoperating (storage) altitude test: 25°C, 15,000 ft (4600 m) Operating temperature: -4° to 122°F (-20° to 50°C) Operating humidity: 10% to 90% (noncondensing) Operating altitude test: 40°C, 9843 ft.(3000 m)					
System memory	2048 MB DRAM1024 MB flash					
Warranty	Limited lifetime hardware warranty					
Available transmit power settings	2.4 GHz 23 dBm (200 mW) 20 dBm (100 mW) 17 dBm (50 mW) 14 dBm (25 mW) 11 dBm (12.5 mW) 8 dBm (6.25 mW) 5 dBm (3.13 mW) 2 dBm (1.56 mW) -1 dBm (0.79 mW) -4 dBm(0.39 mW)	5 GHz • 26 dBm (400 mW) • 23 dBm (200 mW) • 20 dBm (100 mW) • 17 dBm (50 mW) • 14 dBm (25 mW) • 11 dBm (12.5 mW) • 8 dBm (6.25 mW) • 5 dBm (3.13 mW) • 2 dBm (1.56 mW) • -1 dBm (0.79 mW)				

Specification Item A (A regulatory domain): I (I regulatory domain): Regulatory domains and 20-• 2.412 to 2.462 GHz; 11 channels • 2.412 to 2.472 GHz; 13 channels MHz operating • 5.180 to 5.320 GHz; 8 channels • 5.180 to 5.320 GHz; 8 channels channels • 5.500 to 5.700 GHz; 8 channels K (K regulatory domain): (excludes 5.600 to 5.640 GHz) • 2.412 to 2.472 GHz; 13 channels • 5.745 to 5.825 GHz; 5 channels • 5.180 to 5.320 GHz; 8 channels B (B regulatory domain): • 5.745 to 5.825 GHz; 5 channels • 2.412 to 2.462 GHz; 11 channels N (N regulatory domain): • 5.180 to 5.320 GHz; 8 channels • 2.412 to 2.462 GHz; 11 channels • 5.500 to 5.120 GHz; 12 channels • 5.180 to 5.320 GHz; 8 channels • 5.745 to 5.825 GHz; 5 channels • 5.745 to 5.825 GHz; 5 channels C (C regulatory domain): Q (Q regulatory domain): • 2.412 to 2.472 GHz; 13 channels • 2.412 to 2.472 GHz; 13 channels • 5.745 to 5.825 GHz; 5 channels • 5.180 to 5.320 GHz; 8 channels D (D regulatory domain): • 5.500 to 5.700 GHz; 11 channels • 2.412 to 2.462 GHz; 11 channels R (R regulatory domain): • 5.180 to 5.320 GHz; 8 channels • 2.412 to 2.472 GHz; 13 channels • 5.500 to 5.720 GHz; 12 channels • 5.180 to 5.320 GHz; 8 channels • 5.745 to 5.865 GHz; 7 channels • 5.660 to 5720 GHz; 4 channels E (E regulatory domain): • 5.745 to 5.825 GHz; 5 channels • 2.412 to 2.472 GHz; 13 channels S (S regulatory domain): • 5.180 to 5.320 GHz; 8 channels • 2.412 to 2.472 GHz; 13 channels • 5.500 to 5.700 GHz; 8 channels • 5.180 to 5.320 GHz; 8 channels (excludes 5.600 to 5.640 GHz) • 5.500 to 5.700 GHz; 11 channels F (F regulatory domain): • 5.745 to 5.825 GHz; 5 channels • 2.412 to 2.472 GHz; 13 channels T (T regulatory domain): • 5.250 to 5.350 GHz; 4 channels • 2.412 to 2.462 GHz; 11 channels • 5.725 to 5.825 GHz; 4 channels • 5.180 to 5.320 GHz; 8 channels G (G regulatory domain): • 5.500 to 5.720 GHz; 12 channels • 2.412 to 2.472 GHz; 13 channels • 5.745 to 5.825 GHz; 5 channels • 5.745 to 5.825 GHz: 5 channels Z (Z regulatory domain): H (H regulatory domain): • 2.412 to 2.462 GHz; 11 channels • 2.412 to 2.472 GHz; 13 channels • 5.180 to 5.320 GHz; 8 channels • 5.180 to 5.320 GHz: 8 channels • 5.500 to 5.700 GHz: 8 channels • 5.745 to 5.825 GHz; 5 channels (excludes 5.600 to 5.640 GHz) • 5.745 to 5.805 GHz; 4 channels

Note: Customers are responsible for verifying approval for use in their individual countries. To verify approval and to identify the regulatory domain that corresponds to a particular country, visit https://www.cisco.com/go/aironet/compliance

Item	Specification	
Maximum number of nonoverlapping channels	2.4 GHz • 802.11b/g: • 20 MHz: 3 • 802.11n: • 20 MHz: 3 • 802.11ax: • 20 MHz: 3	5 GHz • 802.11a: • 20 MHz: 26 FCC, 16 EU • 802.11n: • 20 MHz: 26 FCC, 16 EU • 40 MHz: 12 FCC, 7 EU • 802.11ac/ax: • 20 MHz: 26 FCC, 16 EU • 40 MHz: 7 FCC, 7 EU • 80 MHz: 12 FCC, 7 EU • 80 MHz: 5 FCC, 3 EU • 160 MHz 2 FCC, 1 EU

Note: This varies by regulatory domain. Refer to the product documentation for specific details for each regulatory domain.

Compliance standards

Safety:

- · IEC 60950-1
- ∘ EN 60950-1
- ∘ UL 60950-1
- · CAN/CSA-C22.2 No. 60950-1
- AS/NZS60950.1
- · UL 2043
- · Class III equipment

• Emissions:

- CISPR 32 (rev. 2015)
- EN 55032 (rev. 2012/AC:2013)
- EN 55032 (rev. 2015)
- EN61000-3-2 (rev. 2014)
- EN61000-3-3 (rev. 2013)
- · KN61000-3-2
- · KN61000-3-3
- AS/NZS CISPR 32 Class B (rev. 2015)
- 47 CFR FCC Part 15B
- ICES-003 (rev. 2016 Issue 6, Class B)
- VCCI-CISPR 32
- CNS (rev. 13438)
- ∘ KN-32
- QCVN 118:2018/BTTTT

• Immunity:

- o CISPR 24 (rev. 2010)
- EN 55024 + AMD 1(rev. 2010)
- EN 55035: 2017
- · KN35

• Emissions and immunity:

- EN 301 489-1 (v2.1.1 2017-02)
- EN 301 489-17 (v3.1.1 2017-02)
- · QCVN (18:2014)

Specification Item QCVN 112:2017/BTTTT ∘ KN 489-1 KN 489-17 EN 60601-1-2:2015 o EN 61000-6-1: 2007 • Radio: EN 300 328 (v2.1.1) EN 301 893 (v2.1.1) AS/NZS 4268 (rev. 2017) 47 CFR FCC Part 15C, 15.247, 15.407 ∘ RSP-100 RSS-GEN · RSS-247 · China regulations SRRC LP0002 (rev 2018.1.10) Japan Std. 33a, Std. 66, and Std. 71 • RF safety: EN 50385 (rev. Aug 2002) ARPANSA AS/NZS 2772 (rev. 2016) EN 62209-1 (rev. 2016) EN 62209-2 (rev. 2010) 47 CFR Part 1.1310 and 2.1091 ∘ RSS-102 • IEEE standards: • IEEE 802.3 IEEE 802.3ab IEEE 802.3af/at • IEEE 802.11a/b/g/n/ac/ax · IEEE 802.11h, 802.11d • Security: 802.11i, Wi-Fi Protected Access 2 (WPA2), WPA3 。 802.1X Advanced Encryption Standard (AES) • Extensible Authentication Protocol (EAP) types: EAP-Transport Layer Security (TLS) EAP-Tunneled TLS (TTLS) or Microsoft Challenge Handshake Authentication Protocol (MSCHAP) v2 Protected EAP (PEAP) v0 or EAP-MSCHAP v2 EAP-Flexible Authentication via Secure Tunneling (EAP-FAST) PEAP v1 or EAP-Generic Token Card (GTC) EAP-Subscriber Identity Module (SIM)

Item	Specification	02.11b: 1, 2, 5.5, and 11 Mbps 02.11a/g: 6, 9, 12, 18, 24, 36, 48, and 54 Mbps 02.11n data rates on 2.4 GHz (only 20 MHz and MCS 0 to MCS 31) and 5 GHz: ICS Index¹ Gi² = 800 ns Gi = 800 ns Gi = 400 ns 20-MHz rate (Mbps) (Mbps) (Mbps) 6.5 13.5 7.2 15 13 27 14.4 30 19.5 40.5 21.7 45 26 54 28.9 60 39 81 43.3 90 52 108 57.8 120 58.5 121.5 65 135 65 135 72.2 150 13 27 14.4 30 26 54 28.9 60 0 39 81 43.3 90 1 52 108 57.8 120 1 30 27 14.4 30 2 6 54 28.9 60 3 9 81 43.3 90 1 1 52 108 57.8 120 2 8.9 60 3 9 81 43.3 90 1 1 52 150 54 28.9 60 3 9 81 43.3 90 1 1 52 108 57.8 120 2 78 162 86.7 180 3 104 216 115.6 240 4 117 243 130 270 1 44.4 300								
Data rates supported	802.11b: 1, 2, 5.5, and 11 Mbps									
	802.11a/g: 6, 9, 12, 18, 24, 36, 48, and 54 Mbps									
	802.11n data rates on 2.4 GHz (only 20 MHz and MCS 0 to MCS 31) and 5 GHz:									
	MCS Index ¹	GI ² = 800 ns	GI = 800 ns	GI = 400 ns	GI = 400 ns					
	0	6.5	13.5	7.2	15					
	1	13	27	14.4	30					
	2	19.5	40.5	21.7	45					
	3	26	54	28.9	60					
	4	39	81	43.3	90					
	5	52	108	57.8	120					
	6	58.5	121.5	65	135					
	7	65	135	72.2	150					
	8	13	27	14.4	30					
	9	26	54	28.9	60					
	10	39	81	43.3	90					
	11	52	108	57.8	120					
	12	78	162	86.7	180					
	13	104	216	115.6	240					
	14	117	243	130	270					
	15	130	270	144.4	300					
	16	19.5	40.5	21.7	45					
	17	39	81	43.4	90					

¹ MCS index: The Modulation and Coding Scheme (MCS) Index determines the number of spatial streams, the modulation, the coding rate, and the data rate values.

² GI: A guard interval (GI) between symbols helps receivers overcome the effects of multipath delay spreads.

Item S	Specifica	tion									
1	18		58.5		121.5		65		135		
1	19		78		162		86.7		180		
2	20		117		243		130		270		
2	21		156		324		173.3		360		
2	22		175.5		364.5		195		405		
2	23		195		405		216.7		450		
2	24				54		28.9		60		
2	25		52		108		57.8		120		
2	26		78		162		86.7		180		
2	27		104		216		115.6		240		
2	28		156		324		173.3		360		
2	29		208		432		231.1		480		
3	30		234		486		260		540		
3	31		260		540		288.9		600		
8	802.11ac	data rates	s (5 GHz):	GHz):							
	MCS Index	Spatial streams	GI = 800 i	าร	GI = 40			= 400 ns			
			rate	40-MHz rate (Mbps)	rate	160- MHz rate (Mbps)	rate	40-MHz rate (Mbps)	rate	160- MHz rate (Mbps)	
C	0	1	6.5	13.5	29.3	58.5	7.2	15	32.5	65	
1	1	1	13	27	58.5	117	14.4	30	65	130	
2	2	1	19.5	40.5	87.8	175.5	21.7	45	97.5	195	
3	3	1	26	54	117	234	28.9	60	130	260	
4	4	1	39	81	175.5	351	43.3	90	195	390	
5	5	1	52	108	234	468	57.8	120	260	520	
6	6	1	58.5	121.5	263.3	526.5	65	135	292.5	585	

Specifica	ation									
7	1	65	135	292.5	585	72.2	150	325	650	
8	1	78	162	351	702	86.7	180	390	780	
9	1	_	180	390	780	_	200	433.3	866.7	
MCS Index	Spatial streams	GI = 800	ns			GI = 400	ns			
		20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)	20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)	
0	2	13	27	58.5	117	14.4	30	65	130	
1	2	26	54	117	234	28.9	60	130	260	
2	2	39	81	175.5	351	43.3	90	195	390	
3	2	52	108	234	468	57.8	120	260	520	
4	2	78	162	351	702	86.7	180	390	780	
5	2	104	216	468	936	115.6	240	520	1040	
6	2	117	243	526.5	1053	130	270	585	1170	
7	2	130	270	585	1170	144.4	300	650	1300	
8	2	156	324	702	1404	173.3	360	780	1560	
9	2	_	360	780	1560	-	400	866.7	1733.4	
MCS Index	Spatial streams	GI = 800	ns			GI = 400 ns				
		20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)	20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)	
0	3	19.5	40.5	87.8	175.5	21.7	45	97.5	195	
1	3	39	81	175.5	351	43.3	90	195	390	
2	3	58.5	121.5	263.3	526.5	65	135	292.5	585	
3	3	78	162	351	702	86.7	180	390	780	
4	3	117	243	526.5	1053	130	270	585	1170	
5	3	156	324	702	1404	173.3	360	780	1560	
6	3	175.5	364.5	-	1579.5	195	405	_	1755	

Specific	Specification Sp									
7	3	195	405	877.5	1755	216.7	450	975	1950	
8	3	234	486	1053	2106	260	540	1170	2340	
9	3	260	540	1170	-	288.9	600	1300	_	
MCS Index	Spatial streams	GI = 800	ns			GI = 400	ns			
		20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)	20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps	
0	4	26	54	117	234	28.8	60	130	260	
1	4	52	108	234	468	57.8	120	260	520	
2	4	78	162	351	702	86.6	180	390	780	
3	4	104	216	468	936	115.6	240	520	1040	
4	4	156	324	702	1404	173.4	360	780	1560	
5	4	208	432	936	1872	231.2	480	1040	2080	
6	4	234	486	1053	2106	260	540	1170	2340	
7	4	260	540	1170	2340	288.8	600	1300	2600	
8	4	312	648	1404	2808	346.6	720	1560	3120	
9	4	-	720	1560	3120	_	800	1733	3466.	
802.11a GHz bar	x data rate	s (20 MHz	on both 2	.4- and 5-	GHz band	s and 40,	80, and 16	0 MHz onl	y on 5	
MCS Index	Spatial streams	GI = 1600) ns			GI = 800	ns			
		20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)	20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps	
0	1	4.3	8	17	34	4.3	9	18	36	
1	1	16	33	68	136	17	34	72	144	
2	1	24	49	102	204	26	52	108	216	
3	1	33	65	136	272	34	69	144	282	
4	1	49	98	204	408	52	103	216	432	
5	1	65	130	272	544	69	138	288	576	

Item	Specif	fication								
	6	1	73	146	306	613	77	155	324	649
	7	1	81	163	340	681	86	172	360	721
	8	1	98	195	408	817	103	207	432	865
	9	1	108	217	453	907	115	229	480	961
	10	1	122	244	510	1021	129	258	540	1081
	11	1	135	271	567	1134	143	287	600	1201
	0	2	8.6	16	34	68	8.6	18	36	72
	1	2	32	66	136	272	34	68	144	288
	2	2	48	98	204	408	52	104	216	432
	3	2	66	130	272	544	68	138	288	564
	4	2	98	196	408	816	104	206	432	864
	5	2	130	260	544	1088	138	276	576	1152
	6	2	146	292	612	1226	154	310	648	1298
	7	2	162	326	680	1362	172	344	720	1442
	8	2	196	390	816	1634	206	414	864	1730
	9	2	216	434	906	1814	230	458	960	1922
	10	2	244	488	1020	2042	258	516	1080	2162
	11	2	270	542	1134	2268	286	574	1200	2402
	0	3	12.9	24	51	102	12.9	27	54	108
	1	3	48	99	204	408	51	102	216	432
	2	3	72	147	306	612	78	156	324	648
	3	3	99	195	408	816	102	207	432	846
	4	3	147	294	612	1224	156	309	648	1296
	5	3	195	390	816	1632	207	414	864	1728
	6	3	219	438	918	1839	231	465	972	1947
	7	3	243	489	1020	2043	258	516	1080	2163
	8	3	294	585	1224	2451	309	621	1296	2595

Item	Specif	ication								
	9	3	324	651	1359	2721	345	687	1440	2883
	10	3	366	732	1530	3063	387	774	1620	3243
	11	3	405	813	1701	3402	429	861	1800	3603
	0	4	17.2	32	68	136	17.2	36	72	144
	1	4	64	132	272	544	68	136	288	576
	2	4	96	196	408	816	104	208	432	864
	3	4	132	260	544	1088	136	276	576	1128
	4	4	196	392	816	1632	208	412	864	1728
	5	4	260	520	1088	2176	276	552	1152	2304
	6	4	292	584	1224	2452	308	620	1296	2596
	7	4	324	652	1360	2724	344	688	1440	2884
	8	4	392	780	1632	3268	412	828	1728	3460
	9	4	432	868	1812	3628	460	916	1920	3844
	10	4	488	976	2040	4084	516	1032	2160	4324
	11	4	540	1084	2268	4536	572	1148	2400	4804
	0	6	48.8	97.5	204.2	-	51.6	103.2	216.2	-
	1	6	97.5	195.0	408.3	-	103.2	206.5	432.4	-
	2	6	146.3	292.5	612.5	-	154.9	309.7	648.5	-
	3	6	195.0	390.0	816.7	-	206.5	412.9	864.7	-
	4	6	292.5	585.0	1225.0	-	309.7	619.4	1297.1	-
	5	6	390.0	780.0	1633.3	-	412.9	825.9	1729.4	_
	6	6	438.8	877.5	1837.5	-	464.6	929.1	1945.6	_
	7	6	487.5	975.0	2041.7	-	516.2	1032.4	2161.8	_
	8	6	585.0	1170.0	2450.0	-	619.4	1238.8	2594.1	-
	9	6	650.0	1300.0	2722.2	-	688.2	1376.5	2882.4	-
	10	6	731.3	1462.5	3062.5	-	774.3	1548.5	3242.6	-
	11	6	812.5	1625.0	3402.8	-	860.3	1720.6	3602.9	-

tem	Specifica	ntion								
	0	8	65.0	130.0	272.2	-	68.8	137.6	288.2	-
	1	8	130.0	260.0	544.4	-	137.6	275.3	576.5	_
	2	8	195.0	390.0	816.7	-	206.5	412.9	864.7	-
	3	8	260.0	520.0	1088.9	-	275.3	550.6	1152.9	-
	4	8	390.0	780.0	1633.3	-	412.9	825.9	1729.4	-
	5	8	520.0	1040.0	2177.8	-	550.6	1101.2	2305.9	-
	6	8	585.0	1170.0	2450.0	-	619.4	1238.8	2594.1	-
	7	8	650.0	1300.0	2722.2	-	688.2	1376.5	2882.4	-
	8	8	780.0	1560.0	3266.7	-	825.9	1651.8	3458.8	-
	9	8	866.7	1733.3	3629.6	-	917.6	1835.3	3843.1	-
	10	8	975.0	1950.0	4083.3	-	1032.4	2064.7	4323.5	-
	11	8	1083.3	2166.7	4537.0	-	1147.1	2294.1	4803.9	-
	MCS Index	Spatial streams		GI = 3	200 ns					
			20-MHz rate (Mbps)	40-MHz rate (Mbps)	80-MHz rate (Mbps)	160- MHz rate (Mbps)				
	0	1	3.9	7.2	15.3	30.6				
	1	1	14.4	29.7	61.2	122.4				
	2	1	21.6	44.1	91.8	183.6				
	3	1	29.7	58.5	122.4	244.8				
	4	1	44.1	88.2	183.6	367.2				
	5	1	58.5	117.0	244.8	489.6				
	6	1	65.7	131.4	275.4	551.7				
	7	1	72.9	146.7	306.0	612.9				
	8	1	88.2	175.5	367.2	735.3				
	9	1	97.2	195.3	407.7	816.3				
	10	1	109.8	219.6	459.0	918.9				
	11	1	121.5	243.9	510.3	1020.6				

Item	Specifi	ication				
	0	2	7.7	14.4	30.6	61.2
	1	2	28.8	59.4	122.4	244.8
	2	2	43.2	88.2	183.6	367.2
	3	2	59.4	117.0	244.8	489.6
	4	2	88.2	176.4	367.2	734.4
	5	2	117.0	234.0	489.6	979.2
	6	2	131.4	262.8	550.8	1103.4
	7	2	145.8	293.4	612.0	1225.8
	8	2	176.4	351.0	734.4	1470.6
	9	2	194.4	390.6	815.4	1632.6
	10	2	219.6	439.2	918.0	1837.8
	11	2	243.0	487.8	1020.6	2041.2
	0	3	11.6	21.6	45.9	91.8
	1	3	43.2	89.1	183.6	367.2
	2	3	64.8	132.3	275.4	550.8
	3	3	89.1	175.5	367.2	734.4
	4	3	132.3	264.6	550.8	1101.6
	5	3	175.5	351.0	734.4	1468.8
	6	3	197.1	394.2	826.2	1655.1
	7	3	218.7	440.1	918.0	1838.7
	8	3	264.6	526.5	1101.6	2205.9
	9	3	291.6	585.9	1223.1	2448.9
	10	3	329.4	658.8	1377.0	2756.7
	11	3	364.5	731.7	1530.9	3061.8
	0	4	15.5	28.8	61.2	122.4
	1	4	57.6	118.8	244.8	489.6
	2	4	86.4	176.4	367.2	734.4

tem	Specifi	cation				
	3	4	118.8	234.0	489.6	979.2
	4	4	176.4	352.8	734.4	1468.8
	5	4	234.0	468.0	979.2	1958.4
	6	4	262.8	525.6	1101.6	2206.8
	7	4	291.6	586.8	1224.0	2451.6
	8	4	352.8	702.0	1468.8	2941.2
	9	4	388.8	781.2	1630.8	3265.2
	10	4	439.2	878.4	1836.0	3675.6
	11	4	486.0	975.6	2041.2	4082.4
	0	6	43.,9	87.8	183.8	-
	1	6	87.8	175.5	367.5	-
	2	6	131.6	263.3	551.3	-
	3	6	175.5	351.0	735.0	-
	4	6	263.3	526.5	1102.5	-
	5	6	351.0	702.0	1470.0	-
	6	6	394.9	789.8	1653.8	-
	7	6	438.8	877.5	1837.5	-
	8	6	526.5	1053.0	2205.0	-
	9	6	585.0	1170.0	2450.0	-
	10	6	658.1	1316.3	2756.3	-
	11	6	731.3	1463.5	3062.5	-
	0	8	58.5	117.0	245.0	-
	1	8	117.0	234.0	490.0	-
	2	8	175.5	351.0	735.0	-
	3	8	234.0	468.0	980.0	-
	4	8	351.0	702.0	1470.0	-
	5	8	468.0	936.0	1960.0	-

	Item		Spe	cification							
Social S			6	8	526.5	1053.0	2205	.0 -			
Second S			7	8	585.0	1170.0	2450	.0 -			
10			8	8	702.0	1404.0	2940	.0 -			
11 8 975.0 1950.0 4083.3 -			9	8	780.0	1560.0	3266	.6 -			
Transmit power and receive sensitivity S-GHz slave radio Total TX RX sensitivity (dBm) S-GHz sensitivi			10	8	877.5	1755.0	3675	.0 -			
Spatial streams			11	8	975.0	1950.0	4083	.3 -			
Spatial streams Number of active antennas Total TX power (dBm) RX sensitivity (dBm)					Transmit po	wer and	recei	ve sensitivity			
Streams active antennas power (dBm) sensitivity (dBm) power (d					5-GHz m	aster rac	lio	5-GHz sl	ave radio	2.4-GF	Iz radio
1 Mbps 1 4 - - - - - 23 -104 11 Mbps 1 4 - - - - - 23 -96 802.11a/g 802.11a/g 24 Mbps 1 4 23 -100 23 -99 23 -98 24 Mbps 1 4 22 -92 22 -92 22 -91 54 Mbps 1 4 21 -84 21 -83 20 -82 802.11n HT20 MCS4 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 <td< th=""><th></th><th>_</th><th></th><th>active</th><th>power</th><th>sensit</th><th>ivity</th><th>power</th><th>sensitivity</th><th>power</th><th>sensitivity</th></td<>		_		active	power	sensit	ivity	power	sensitivity	power	sensitivity
11 Mbps						802.11	/11b				
802.11a/g 6 Mbps 1 4 23 -100 23 -99 23 -98 24 Mbps 1 4 22 -92 22 -92 22 -91 54 Mbps 1 4 21 -84 21 -83 20 -82 802.11n HT20 MCS0 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	1 Mbps	1		4	_	-		-	-	23	-104
6 Mbps 1 4 23 -100 23 -99 23 -98 24 Mbps 1 4 22 -92 22 -92 22 -91 54 Mbps 1 4 21 -84 21 -83 20 -82 802.11n HT20 MCS0 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	11 Mbps	1		4	_	-		-	_	23	-96
24 Mbps 1 4 22 -92 22 -92 22 -91 54 Mbps 1 4 21 -84 21 -83 20 -82 802.11n HT20 MCS0 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94						802.1	1a/g				
54 Mbps 1 4 21 -84 21 -83 20 -82 802.11n HT20 MCS0 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	6 Mbps	1		4	23	-100		23	-99	23	-98
802.11n HT20 MCS0 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	24 Mbps	1		4	22	-92		22	-92	22	-91
MCS0 1 4 23 -99 23 -99 23 -98 MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	54 Mbps	1		4	21	-84		21	-83	20	-82
MCS4 1 4 22 -89 22 -89 22 -88 MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94						802.11n	HT20)			
MCS7 1 4 20 -82 20 -82 20 -81 MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	MCS0	1		4	23	-99		23	-99	23	-98
MCS8 2 4 23 -98 23 -98 23 -93 MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	MCS4	1		4	22	-89		22	-89	22	-88
MCS12 2 4 22 -87 22 -86 22 -82 MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	MCS7	1		4	20	-82		20	-82	20	-81
MCS15 2 4 20 -80 20 -79 20 -76 MCS16 3 4 23 -97 23 -96 23 -94	MCS8	2		4	23	-98		23	-98	23	-93
MCS16 3 4 23 -97 23 -96 23 -94	MCS12	2		4	22	-87		22	-86	22	-82
	MCS15	2		4	20	-80		20	-79	20	-76
NOC20 0 4 00 05 00 05	MCS16	3		4	23	-97		23	-96	23	-94
MCS20 3 4 22 -85 22 -85 22 -83	MCS20	3		4	22	-85		22	-85	22	-83
MCS23 3 4 20 -78 20 -78 20 -76	MCS23	3		4	20	-78		20	-78	20	-76

Item	Spe	cification						
MCS24	4	4	23	-96	23	-95	23	-93
MCS28	4	4	22	-84	22	-84	22	-82
MCS31	4	4	20	-77	20	-77	20	-75
				802.11n HT40)			
MCS0	1	4	23	-96	23	-96	-	_
MCS4	1	4	22	-86	22	-86	_	-
MCS7	1	4	20	-80	20	-79	_	_
MCS8	2	4	23	-96	23	-95	-	_
MCS12	2	4	22	-84	22	-84	-	-
MCS15	2	4	20	-78	20	-77	-	-
MCS16	3	4	23	-94	23	-94	-	-
MCS20	3	4	22	-82	22	-82	-	-
MCS23	3	4	20	-76	20	-76	-	_
MCS24	4	4	23	-93	23	-93	_	_
MCS28	4	4	22	-81	22	-81	_	_
MCS31	4	4	20	-75	20	-75	_	-
			8	02.11ac VHT2	20			
MCS0	1	4	23	-100	23	-99	-	-
MCS4	1	4	22	-90	22	-90	-	-
MCS7	1	4	20	-83	20	-83	-	_
MCS8	1	4	20	-78	20	-78	-	-
MCS9	1	4	_	_	_	_	_	_
MCS0	2	4	23	-97	23	-97	-	-
MCS4	2	4	22	-86	22	-86	_	_
MCS7	2	4	20	-80	20	-79	-	-
MCS8	2	4	20	-76	20	-75	_	_
MCS9	2	4	_	-	-	-	_	-
MCS0	3	4	23	-96	23	-96	_	_

Item	Spe	cification						
MCS4	3	4	22	-85	22	-84	-	-
MCS7	3	4	20	-78	20	-78	_	_
MCS8	3	4	20	-74	20	-74	-	-
MCS9	3	4	20	-73	20	-73	_	-
MCS0	4	4	23	-95	23	-95	_	-
MCS4	4	4	22	-84	22	-83	_	_
MCS7	4	4	20	-77	20	-77	-	-
MCS8	4	4	20	-73	20	-73	-	_
MCS9	4	4	-	-	-	-	-	-
MCS0	1	8	26	-102	ı	n/a	-	-
MCS4	1	8	25	-91	ı	n/a	-	-
MCS7	1	8	23	-86	ı	n/a	-	-
MCS8	1	8	23	-81	ı	n/a	-	-
MCS9	1	8	-	-		-	-	-
MCS0	2	8	26	-100	ı	n/a	-	-
MCS4	2	8	25	-89	ı	n/a	-	-
MCS7	2	8	23	-82	ı	n/a	-	-
MCS8	2	8	23	-79	ı	n/a	-	-
MCS9	2	8	-	-		-	-	-
MCS0	3	8	26	-99	ı	n/a	-	-
MCS4	3	8	25	-88	ı	n/a	-	-
MCS7	3	8	23	-81	ı	n/a	-	-
MCS8	3	8	23	-77	ı	n/a	-	-
MCS9	3	8	23	-76	I	n/a	-	-
MCS0	4	8	26	-98	I	n/a	-	-
MCS4	4	8	25	-86	I	n/a	-	-
MCS7	4	8	23	-80	I	n/a	_	-

Item	Spe	cification						
MCS8	4	8	23	-76	n	/a	_	_
MCS9	4	8	_	_		-	_	-
MCS0	6	8	26	-96	n	/a	_	-
MCS4	6	8	25	-84	n	/a	-	-
MCS7	6	8	23	-78	n	/a	_	-
MCS8	6	8	23	-74	n	/a	_	-
MCS9	6	8	23	-72	n	/a	_	_
MCS0	8	8	26	-96	n	/a	-	_
MCS4	8	8	25	-84	n	/a	-	_
MCS7	8	8	23	-77	n	/a	-	-
MCS8	8	8	23	-73	n	/a	-	-
MCS9	8	8	-	-		-	-	-
			8	02.11ac VHT4	10			
MCS0	1	4	23	-96	23	-96	-	-
MCS4	1	4	22	-87	22	-87	-	-
MCS7	1	4	20	-81	20	-80	-	-
MCS8	1	4	19	-76	19	-76	-	-
MCS9	1	4	19	-75	19	-75	-	-
MCS0	2	4	23	-95	23	-95	-	-
MCS4	2	4	22	-83	22	-83	_	-
MCS7	2	4	20	-77	20	-77	-	-
MCS8	2	4	19	-74	19	-74	-	-
MCS9	2	4	19	-72	19	-72	-	-
MCS0	3	4	23	-94	23	-93	-	-
MCS4	3	4	22	-82	22	-82	-	-
MCS7	3	4	20	-75	20	-75	-	-
MCS8	3	4	19	-72	19	-71	-	-
MCS9	3	4	19	-70	19	-70	_	_

Item	s	pecification						
MCS0	4	4	23	-93	23	-92	-	-
MCS4	4	4	22	-81	22	-81	-	-
MCS7	4	4	20	-75	20	-75	_	-
MCS8	4	4	19	-71	19	-71	_	-
MCS9	4	4	19	-69	19	-69	_	-
MCS0	1	8	26	-99	1	n/a	_	-
MCS4	1	8	25	-89	1	n/a	_	-
MCS7	1	8	23	-83	1	n/a	_	-
MCS8	1	8	22	-78	1	n/a	-	-
MCS9	1	8	22	-77	1	n/a	_	-
MCS0	2	8	26	-97	1	n/a	-	-
MCS4	2	8	25	-86	1	n/a	_	-
MCS7	2	8	23	-79	1	n/a	-	-
MCS8	2	8	22	-76	1	n/a	_	-
MCS9	2	8	22	-75	1	n/a	-	-
MCS0	3	8	26	-96	1	n/a	_	-
MCS4	3	8	25	-85	1	n/a	-	-
MCS7	3	8	23	-78	1	n/a	_	-
MCS8	3	8	22	-74	1	n/a	-	-
MCS9	3	8	22	-73	1	n/a	_	-
MCS0	4	8	26	-95	1	n/a	-	-
MCS4	4	8	25	-83	1	n/a	_	-
MCS7	4	8	23	-76	1	n/a	-	-
MCS8	4	8	22	-73	1	n/a	_	-
MCS9	4	8	22	-72	1	n/a	-	-
MCS0	6	8	26	-94	1	n/a	_	_
MCS4	6	8	25	-81	1	n/a	-	-

Item	Spe	cification						
MCS7	6	8	23	-74	r	ı/a	_	_
MCS8	6	8	22	-70	r	ı/a	_	-
MCS9	6	8	22	-69	r	ı/a	_	_
MCS0	8	8	26	-93	r	ı/a	_	-
MCS4	8	8	25	-81	r	ı/a	_	-
MCS7	8	8	23	-74	r	ı/a	_	-
MCS8	8	8	22	-70	r	ı/a	_	_
MCS9	8	8	22	-69	r	ı/a	_	_
			8	02.11ac VHT8	30			
MCS0	1	4	23	-93	23	-93	_	-
MCS4	1	4	22	-84	22	-83	-	-
MCS7	1	4	20	-76	20	-76	_	-
MCS8	1	4	19	-72	19	-72	-	-
MCS9	1	4	19	-71	19	-70	_	-
MCS0	2	4	23	-92	23	-92	-	-
MCS4	2	4	22	-80	22	-80	_	_
MCS7	2	4	20	-73	20	-72	-	-
MCS8	2	4	19	-69	19	-69	_	_
MCS9	2	4	19	-68	19	-67	-	-
MCS0	3	4	23	-90	23	-90	_	-
MCS4	3	4	22	-78	22	-78	-	-
MCS7	3	4	20	-71	20	-71	_	_
MCS8	3	4	19	-68	19	-67	-	-
MCS9	3	4	19	-66	19	-65	_	_
MCS0	4	4	23	-89	23	-89	-	-
MCS4	4	4	22	-77	22	-77	_	-
MCS7	4	4	20	-70	20	-70	-	-
MCS8	4	4	19	-66	19	-66	-	_

Item	Sp	ecification						
MCS9	4	4	19	-65	19	-64	-	_
MCS0	1	8	26	-95		n/a	-	_
MCS4	1	8	25	-87		n/a	_	-
MCS7	1	8	23	-79		n/a	_	-
MCS8	1	8	22	-75		n/a	-	-
MCS9	1	8	22	-73		n/a	_	-
MCS0	2	8	26	-94		n/a	_	-
MCS4	2	8	25	-82		n/a	_	-
MCS7	2	8	23	-76		n/a	_	-
MCS8	2	8	22	-72		n/a	_	_
MCS9	2	8	22	-70		n/a	-	-
MCS0	3	8	26	-93		n/a	_	_
MCS4	3	8	25	-81		n/a	-	-
MCS7	3	8	23	-75		n/a	_	_
MCS8	3	8	22	-71		n/a	-	-
MCS9	3	8	22	-69		n/a	-	_
MCS0	4	8	26	-92		n/a	-	_
MCS4	4	8	25	-80		n/a	_	_
MCS7	4	8	23	-73		n/a	-	_
MCS8	4	8	22	-69		n/a	-	_
MCS9	4	8	22	-68		n/a	-	-
MCS0	6	8	26	-90		n/a	_	_
MCS4	6	8	25	-78		n/a	-	-
MCS7	6	8	23	-71		n/a	-	_
MCS8	6	8	22	-67		n/a	_	-
MCS9	6	8	_	_		-	_	_
MCS0	8	8	26	-89		n/a	_	-

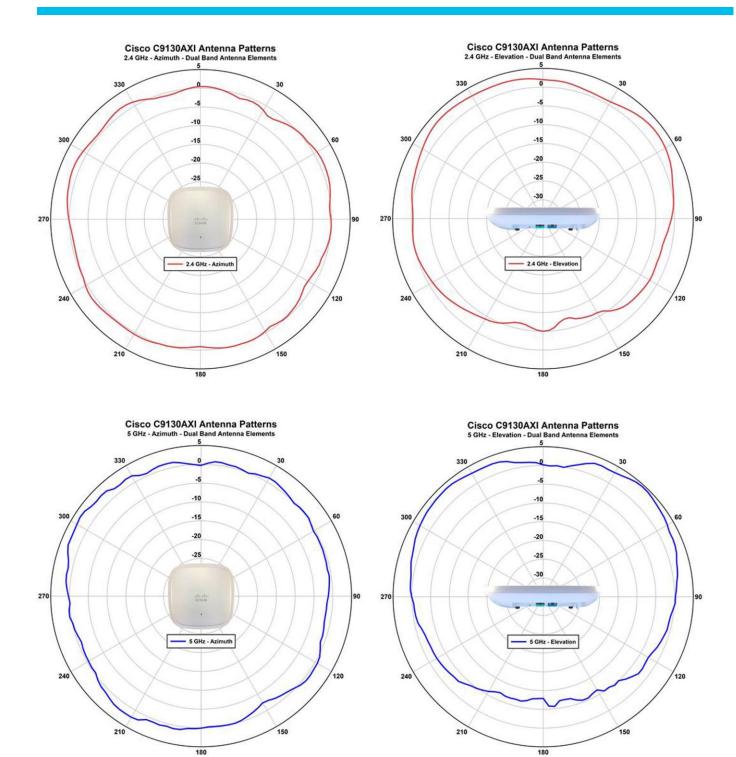
Item	Spe	cification								
MCS4	8	8	25	-77	n/a	-	-			
MCS7	8	8	23	-70	n/a	_	-			
MCS8	8	8	22	-67	n/a	-	-			
MCS9	8	8	22	-65	n/a	-	-			
	802.11ac VHT160									
MCS0	1	4	26	-89	n/a	_	_			
MCS4	1	4	24	-81	n/a	-	-			
MCS7	1	4	22	-73	n/a	_	_			
MCS8	1	4	21	-69	n/a	-	-			
MCS9	1	4	21	-67	n/a	-	-			
MCS0	2	4	26	-85	n/a	-	-			
MCS4	2	4	24	-74	n/a	-	-			
MCS7	2	4	22	-67	n/a	-	-			
MCS8	2	4	21	-63	n/a	-	-			
MCS9	2	4	21	-61	n/a	-	-			
MCS0	3	4	26	-87	n/a	-	-			
MCS4	3	4	24	-74	n/a	-	-			
MCS7	3	4	22	-67	n/a	-	-			
MCS8	3	4	21	-63	n/a	-	-			
MCS9	3	4	_	_	-	-	-			
MCS0	4	4	26	-86	n/a	-	-			
MCS4	4	4	24	-74	n/a	_	_			
MCS7	4	4	22	-67	n/a	-	-			
MCS8	4	4	21	-63	n/a	_	_			
MCS9	4	4	21	-61	n/a	-	-			

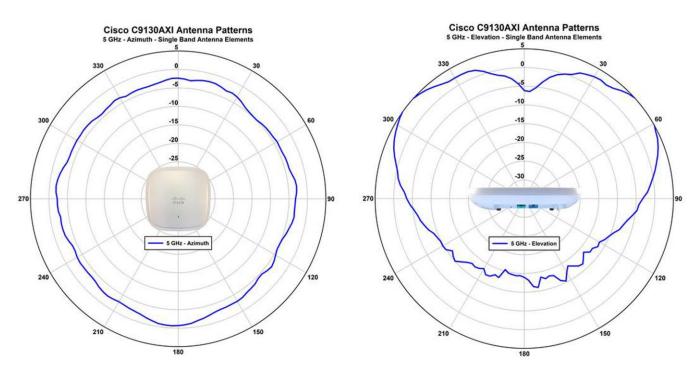
Item		Specification						
				802.11ax H	E20			
MCS0	1	4	23	-99	23	-99	23	-98
MCS4	1	4	22	-90	22	-89	22	-89
MCS7	1	4	20	-82	20	-82	20	-82
MCS8	1	4	19	-78	19	-78	19	-77
MCS9	1	4	19	-77	19	-76	19	-76
MCS10	1	4	18	-73	18	-72	17	-72
MCS11	1	4	18	-71	18	-71	17	-70
MCS0	2	4	23	-98	23	-97	23	-94
MCS4	2	4	22	-86	22	-86	22	-83
MCS7	2	4	20	-79	20	-79	20	-75
MCS8	2	4	19	-75	19	-75	19	-72
MCS9	2	4	19	-74	19	-74	19	-70
MCS10	2	4	18	-71	18	-71	17	-67
MCS11	2	4	18	-68	18	-68	17	-64
MCS0	3	4	23	-96	23	-96	23	-94
MCS4	3	4	22	-85	22	-84	22	-83
MCS7	3	4	20	-77	20	-77	20	-76
MCS8	3	4	19	-74	19	-74	19	-72
MCS9	3	4	19	-72	19	-72	19	-71
MCS10	3	4	18	-69	18	-68	17	-67
MCS11	3	4	18	-66	18	-66	17	-64
MCS0	4	4	23	-95	23	-95	23	-94
MCS4	4	4	22	-83	22	-83	22	-83
MCS7	4	4	20	-77	20	-76	20	-76
MCS8	4	4	19	-73	19	-72	19	-72
MCS9	4	4	19	-71	19	-71	19	-70
MCS10	4	4	18	-68	18	-68	17	-67

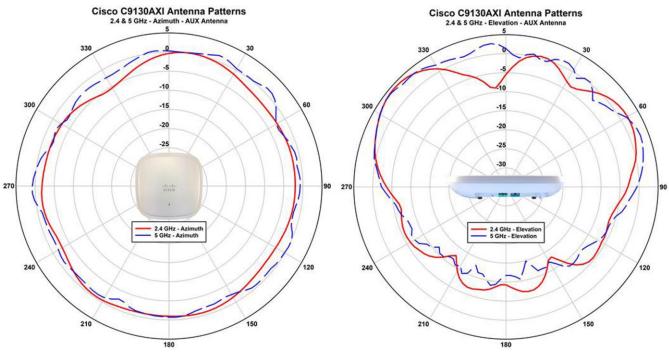
Item	Sp	ecification						
MCS11	4	4	18	-66	18	-66	17	-65
MCS0	1	8	26	-102		n/a	-	-
MCS4	1	8	25	-93		n/a	_	_
MCS7	1	8	23	-85		n/a	_	_
MCS8	1	8	22	-81		n/a	_	_
MCS9	1	8	22	-80		n/a	_	_
MCS10	1	8	21	-76		n/a	-	_
MCS11	1	8	21	-74		n/a	_	_
MCS0	2	8	26	-100		n/a	-	-
MCS4	2	8	25	-89		n/a	_	_
MCS7	2	8	23	-82		n/a	-	_
MCS8	2	8	22	-78		n/a	-	_
MCS9	2	8	22	-77		n/a	-	-
MCS10	2	8	21	-74		n/a	-	-
MCS11	2	8	21	-71		n/a	-	-
MCS0	3	8	26	-99		n/a	-	-
MCS4	3	8	25	-88		n/a	-	-
MCS7	3	8	23	-81		n/a	-	_
MCS8	3	8	22	-77		n/a	-	-
MCS9	3	8	22	-76		n/a	-	-
MCS10	3	8	21	-72		n/a	-	-
MCS11	3	8	21	-70		n/a	-	-
MCS0	4	8	26	-98		n/a	-	-
MCS4	4	8	25	-86		n/a	-	-
MCS7	4	8	23	-80		n/a	-	-
MCS8	4	8	22	-76		n/a	_	_
MCS9	4	8	22	-74		n/a	_	_

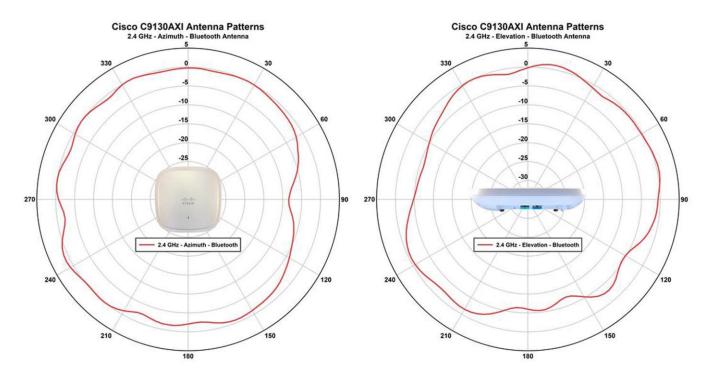
Item	Spe	ecification						
MCS10	4	8	21	-71	1	n/a	_	-
MCS11	4	8	21	-69	1	n/a	_	-
MCS0	6	8	26	-96	1	n/a	-	_
MCS4	6	8	25	-84	1	n/a	-	-
MCS7	6	8	23	-77	1	n/a	_	_
MCS8	6	8	22	-74	1	n/a	-	-
MCS9	6	8	22	-72	1	n/a	_	-
MCS10	6	8	21	-68	1	n/a	_	-
MCS11	6	8	21	-66	1	n/a	_	_
MCS0	8	8	26	-95	1	n/a	-	_
MCS4	8	8	25	-84	1	n/a	_	_
MCS7	8	8	23	-76	1	n/a	-	_
MCS8	8	8	22	-73	1	n/a	_	_
MCS9	8	8	22	-71	1	n/a	-	_
MCS10	8	8	21	-67	1	n/a	-	_
MCS11	8	8	21	-65	1	n/a	_	-
				802.11ax HE4	0			
MCS0	1	4	23	-96	23	-96	-	-
MCS4	1	4	22	-87	22	-87	-	-
MCS7	1	4	20	-80	20	-79	-	-
MCS8	1	4	19	-76	19	-75	-	-
MCS9	1	4	19	-74	19	-74	_	_
MCS10	1	4	18	-71	18	-70	-	-
MCS11	1	4	18	-69	18	-68	_	_
MCS0	2	4	23	-95	23	-95	_	-
MCS4	2	4	22	-84	22	-84	_	-
MCS7	2	4	20	-77	20	-77	-	-
MCS8	2	4	19	-73	19	-72	_	-

Item	Spe	ecification						
MCS9	2	4	19	-71	19	-71	-	-
MCS10	2	4	18	-69	18	-68	-	-
MCS11	2	4	18	-66	18	-66	-	-
MCS0	3	4	23	-94	23	-93	_	-
MCS4	3	4	22	-82	22	-82	_	_
MCS7	3	4	20	-75	20	-74	_	-
MCS8	3	4	19	-71	19	-72	-	-
MCS9	3	4	19	-69	19	-69	-	-
MCS10	3	4	18	-66	18	-66	-	-
MCS11	3	4	18	-64	18	-64	-	-
MCS0	4	4	23	-93	23	-92	-	-
MCS4	4	4	22	-81	22	-81	-	-
MCS7	4	4	20	-74	20	-73	-	-
MCS8	4	4	19	-70	19	-70	-	-
MCS9	4	4	19	-68	19	-68	-	-
MCS10	4	4	18	-65	18	-64	-	-
MCS11	4	4	18	-63	18	-62	-	-
MCS0	1	8	26	-99	r	n/a	-	-
MCS4	1	8	25	-90	r	n/a	-	-
MCS7	1	8	23	-83	r	n/a	-	-
MCS8	1	8	22	-79	r	n/a	-	-
MCS9	1	8	22	-77	r	n/a	-	-
MCS10	1	8	21	-74	r	n/a	-	-
MCS11	1	8	21	-71	r	n/a	-	-
MCS0	2	8	26	-98	r	n/a	-	-
MCS4	2	8	25	-87	r	n/a	_	-
MCS7	2	8	23	-80	r	n/a	-	-


Item	Spe	ecification					
MCS8	2	8	22	-76	n/a	_	-
MCS9	2	8	22	-74	n/a	-	-
MCS10	2	8	21	-72	n/a	_	-
MCS11	2	8	21	-69	n/a	-	-
MCS0	3	8	26	-97	n/a	-	-
MCS4	3	8	25	-85	n/a	-	-
MCS7	3	8	23	-78	n/a	_	-
MCS8	3	8	22	-74	n/a	_	-
MCS9	3	8	22	-73	n/a	_	-
MCS10	3	8	21	-69	n/a	_	-
MCS11	3	8	21	-67	n/a	_	_
MCS0	4	8	26	-95	n/a	-	-
MCS4	4	8	25	-84	n/a	_	_
MCS7	4	8	23	-77	n/a	-	-
MCS8	4	8	22	-73	n/a	_	-
MCS9	4	8	22	-71	n/a	-	-
MCS10	4	8	21	-68	n/a	-	-
MCS11	4	8	21	-66	n/a	-	-
MCS0	6	8	26	-93	n/a	-	-
MCS4	6	8	25	-82	n/a	-	-
MCS7	6	8	23	-74	n/a	-	-
MCS8	6	8	22	-71	n/a	-	-
MCS9	6	8	22	-69	n/a	-	-
MCS10	6	8	21	-66	n/a	-	-
MCS11	6	8	21	-64	n/a	-	-
MCS0	8	8	26	-92	n/a	-	-
MCS4	8	8	25	-81	n/a	_	_


Item	5	Specification						
MCS7	8	8	23	-73	n	/a	_	-
MCS8	8	8	22	-70	n	/a	_	_
MCS9	8	8	22	-68	n	/a	_	-
MCS10	8	8	21	-66	n	/a	_	_
MCS11	8	8	21	-63	n	/a	_	-
				802.11ax HE8	0			
MCS0	1	4	23	-93	23	-93	-	-
MCS4	1	4	22	-84	22	-84	-	-
MCS7	1	4	20	-77	20	-76	-	-
MCS8	1	4	19	-73	19	-73	-	-
MCS9	1	4	18	-71	18	-71	-	-
MCS10	1	4	17	-68	17	-67	-	-
MCS11	1	4	17	-66	17	-65	_	-
MCS0	2	4	23	-92	23	-92	-	-
MCS4	2	4	22	-81	22	-80	_	-
MCS7	2	4	20	-74	20	-73	-	-
MCS8	2	4	19	-70	19	-69	-	_
MCS9	2	4	18	-68	18	-67	_	-
MCS10	2	4	17	-64	17	-64	_	-
MCS11	2	4	17	-62	17	-62	-	-
MCS0	3	4	23	-91	23	-90	_	-
MCS4	3	4	22	-79	22	-79	_	-
MCS7	3	4	20	-71	20	-71	_	-
MCS8	3	4	19	-68	19	-68	-	-
MCS9	3	4	18	-66	18	-65	_	-
MCS10	3	4	17	-63	17	-62	_	-
MCS11	3	4	17	-60	17	-60	_	_
MCS0	4	4	23	-89	23	-89	-	-


Item	Spe	cification						
MCS4	4	4	22	-78	22	-77	_	_
MCS7	4	4	20	-70	20	-70	_	_
MCS8	4	4	19	-67	19	-66	_	_
MCS9	4	4	18	-65	18	-64	_	_
MCS10	4	4	17	-61	17	-61	_	_
MCS11	4	4	17	-59	17	-59	-	-
MCS0	1	8	26	-96	r	n/a	_	_
MCS4	1	8	25	-87	r	n/a	-	-
MCS7	1	8	23	-79	r	n/a	-	_
MCS8	1	8	22	-76	r	n/a	-	-
MCS9	1	8	21	-74	r	n/a	_	-
MCS10	1	8	20	-70	r	n/a	-	_
MCS11	1	8	20	-69	r	n/a	_	_
MCS0	2	8	26	-94	r	n/a	-	-
MCS4	2	8	25	-84	r	n/a	_	_
MCS7	2	8	23	-77	r	n/a	-	-
MCS8	2	8	22	-73	r	n/a	-	-
MCS9	2	8	21	-71	r	n/a	-	-
MCS10	2	8	20	-67	r	n/a	_	_
MCS11	2	8	20	-65	r	n/a	-	-
MCS0	3	8	26	-93	r	n/a	-	-
MCS4	3	8	25	-82	r	n/a	-	-
MCS7	3	8	23	-75	r	n/a	-	-
MCS8	3	8	22	-71	r	n/a	-	-
MCS9	3	8	21	-69	r	n/a	_	_
MCS10	3	8	20	-66	r	n/a	-	-
MCS11	3	8	20	-64	r	n/a	_	_


Item		Specification					
MCS0	4	8	26	-92	n/a	-	-
MCS4	4	8	25	-81	n/a	-	-
MCS7	4	8	23	-73	n/a	-	-
MCS8	4	8	22	-70	n/a	-	_
MCS9	4	8	21	-68	n/a	_	-
MCS10	4	8	20	-64	n/a	_	-
MCS11	4	8	20	-62	n/a	_	-
MCS0	6	8	26	-90	n/a	_	-
MCS4	6	8	25	-78	n/a	-	-
MCS7	6	8	23	-71	n/a	-	-
MCS8	6	8	22	-67	n/a	-	-
MCS9	6	8	21	-65	n/a	-	-
MCS10	6	8	20	-62	n/a	-	-
MCS11	6	8	20	-60	n/a	-	-
MCS0	8	8	26	-89	n/a	-	_
MCS4	8	8	25	-78	n/a	_	_
MCS7	8	8	23	-70	n/a	-	_
MCS8	8	8	22	-67	n/a	-	-
MCS9	8	8	21	-65	n/a	-	-
MCS10	8	8	20	-61	n/a	-	-
MCS11	8	8	20	-59	n/a	-	_
				802.11ax HE16	60		
MCS0	1	4	26	-88	n/a	-	-
MCS4	1	4	25	-81	n/a	-	-
MCS7	1	4	21	-74	n/a	-	-
MCS8	1	4	21	-70	n/a	-	-
MCS9	1	4	20	-68	n/a	-	-
MCS10	1	4	19	-64	n/a	-	-

Item		Specification					
MCS11	1	4	19	-63	n/a	-	-
MCS0	2	4	26	-86	n/a	-	-
MCS4	2	4	25	-75	n/a	-	_
MCS7	2	4	21	-68	n/a	-	-
MCS8	2	4	21	-64	n/a	-	-
MCS9	2	4	20	-62	n/a	-	-
MCS10	2	4	19	-58	n/a	_	_
MCS11	2	4	19	-56	n/a	-	-
MCS0	3	4	26	-86	n/a	_	_
MCS4	3	4	25	-75	n/a	-	-
MCS7	3	4	21	-67	n/a	_	_
MCS8	3	4	21	-64	n/a	-	-
MCS9	3	4	20	-62	n/a	_	-
MCS10	3	4	19	-59	n/a	-	-
MCS11	3	4	19	-57	n/a	_	_
MCS0	4	4	26	-86	n/a	-	-
MCS4	4	4	25	-75	n/a	-	-
MCS7	4	4	21	-68	n/a	-	-
MCS8	4	4	21	-64	n/a	_	-
MCS9	4	4	20	-62	n/a	-	-
MCS10	4	4	19	-58	n/a	_	-
MCS11	4	4	19	-56	n/a	-	-

Figure 1. Antenna profiles

Packaging

The Cisco Catalyst 9100 Access Points require mandatory Smart Licensing. This provides ease of use for Cisco DNA license management, consumption, and tracking. The access points include vastly simplified base network packages (Network Essentials and Network Advantage), with term-based software packages (Cisco DNA Essentials, Cisco DNA Advantage) as add-ons. The Cisco DNA packages, in addition to on-box capabilities, also unlock additional functionality in Cisco DNA Center, enabling controller-based software-defined automation and assurance in your network.

The Cisco Catalyst 9100 Access Points support three types of Cisco DNA licenses: Cisco DNA Essentials, Cisco DNA Advantage, and Cisco DNA Premier. The Cisco DNA licenses provide Cisco innovations on the access point. The Cisco DNA license also includes the Network Essentials and Network Advantage licensing options, which cover wireless fundamentals such as 802.1X authentication, quality of service (QoS), Plug and Play (PnP), telemetry and visibility, and stateful switchover (SSO), as well as security controls. These Network Essentials and Network Advantage components are perpetual and are valid for the life of the access point. Cisco DNA subscription licenses have to be purchased for a 3-, 5-, or 7-year subscription term. Upon expiration of the Cisco DNA license, the Cisco DNA features will expire, whereas the Network Essentials and Network Advantage features will remain.

Note that it is not required to deploy Cisco DNA Center just to use one of the above packages. Refer to https://www.cisco.com/c/dam/en/us/products/collateral/software/one-wireless-subscription/q-and-a-c67-739601.pdf for additional details about the Essentials and Advantage packages.

For information about feature support, refer to the Cisco Catalyst 9100 Release Notes.

Managing licenses with Smart Accounts

Creating Smart Accounts by using the Cisco Smart Software Manager (SSM) enables you to order devices and licensing packages and also manage your software licenses from a centralized website. You can set up the Smart Account to receive daily email alerts and to be notified of expiring add-on licenses that you want to renew. A Smart Account is mandatory for the Cisco Catalyst 9100 Access Points. For more information on Smart Accounts, refer to https://www.cisco.com/go/smartaccounts.

Warranty information

The Cisco Catalyst 9130 Series Access Points come with a limited lifetime warranty that provides full warranty coverage of the hardware for as long as the original end user continues to own or use the product. The warranty includes 10-day advance hardware replacement and ensures that software media are defect-free for 90 days. For more details, visit https://www.cisco.com/go/warranty.

Cisco environmental sustainability

Information about Cisco's environmental sustainability policies and initiatives for our products, solutions, operations, and extended operations or supply chain is provided in the "Environment Sustainability" section of Cisco's <u>Corporate Social Responsibility</u> (CSR) Report.

Reference links to information about key environmental sustainability topics (mentioned in the "Environment Sustainability" section of the CSR Report) are provided in the following table:

Sustainability topic	Reference
Information on product material content laws and regulations	<u>Materials</u>
Information on electronic waste laws and regulations, including products, batteries, and packaging	WEEE compliance

Cisco makes the packaging data available for informational purposes only. It may not reflect the most current legal developments, and Cisco does not represent, warrant, or guarantee that it is complete, accurate, or up to date. This information is subject to change without notice.

Cisco Services

With Cisco Services, you can achieve infrastructure excellence faster with less risk. From an initial WLAN readiness assessment to implementation, full solution support, and in-depth training, our services for the Cisco Catalyst 9130 Series provide expert guidance to help you successfully plan, deploy, manage, and support your new access points. With unmatched networking expertise, best practices, and innovative tools, Cisco Services can help you reduce overall upgrade, refresh, and migration costs as you introduce new hardware, software, and protocols into the network. With a comprehensive lifecycle of services, Cisco experts will help you minimize disruption and improve operational efficiency to extract maximum value from your Cisco DNA-ready infrastructure.

Cisco Capital

Flexible payment solutions to help you achieve your objectives

Cisco Capital makes it easier to get the right technology to achieve your objectives, enable business transformation and help you stay competitive. We can help you reduce the total cost of ownership, conserve capital, and accelerate growth. In more than 100 countries, our flexible payment solutions can help you acquire hardware, software, services and complementary third-party equipment in easy, predictable payments. Learn more.

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore **Europe Headquarters**Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at https://www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Printed in USA C78-742900-03 03/20