—1

Hew lett Pa C ka rd Reference Architecture
Enterprise

HPE Reference Architecture for HPE
Ezmeral ML Ops on Kubernetes
Providing DevOps Speed and Agility for Machine Learning

Reference Architecture

CONTENTS

Executive summary 4
Solution overview 4
Solution components 6
HPE Ezmeral Runtime 6
Kubernetes features on HPE Ezmeral ML Ops 8
HPE Ezmeral ML Ops 9
Best practices 11
HPE EPA Platform configuration for HPE Ezmeral Runtime 11
HPE and NVIDIA GPUs 12
Storage 13
Networking 14
Kubeflow with HPE Ezmeral ML Ops 15
HPE Ezmeral ML Ops use cases 17
Software components 17
Hardware components 18
Use case NYC taxi rides 18
Use case on Pima Indian's diabetes prediction 34
Ezmeral ML Ops - in action with use case (Spark operator) 43
Spark operator with K8s 43
Spark operator use case 45
Model training from KubeDirector Notebook using Spark with Livy 47
Ezmeral ML Ops - Experiment tracking with MLflow 54
Use case workflow 54
Monitoring 66
Kubernetes administrator 67
Kubernetes tenant/project administrator 68
Istio and Prometheus 68
Summary 70
Appendix A: Kubeflow and tests of use cases 71
Kubeflow components use cases GitHub issue summarization - Training with Jupyter 73
GitHub issue summarization — Serving with Seldon 77
Training with TensorFlow (Financial series) 78
Serving a TensorFlow model with KFServing (Financial series) 81
Training a PyTorch model (PyTorch MNIST) 83
Sample Pipeline in the pipelines interface 84
Running a pipeline in Jupyter Notebook 87
Katib Hyperparameter Tuning Q0
Argo workflows 96

E—

Reference Architecture

ML metadata 97
Appendix B: HPE ML Ops KDapp 99
Centos/Ubuntu 99
MLflow 100
NVIDIA: TensorFlow (NGC) 106
TensorFlow + Jupyter 107
Appendix C: Install and configure HPE Ezmeral Runtime 109
Resources and additional links 110

Reference Architecture Page 4

EXECUTIVE SUMMARY

Enterprises across all industries are embarking on a hybrid cloud journey for the development and deployment of their data-driven analytics and
Al/ML applications. The continuous integration/continuous deployment (CI/CD) workflows, collectively referred to as DevOps, have become
ubiquitous for all software development today. On the machine learning front, data scientists still spend a significant amount of tfime and effort
moving projects from development to production. Model versioning is still manual, making it hard to update models in production. Code sharing
is manual; data is copied onto local storage leading to the variability of results between environments. There is also a lack of standardization on
the tools and frameworks used, which makes it tedious and time-consuming to deploy models across all environments.

HPE Ezmeral ML Ops includes the same capabilities and functionality as the HPE Ezmeral Runtime while also providing DevOps-like agility to
enterprise machine learning. With HPE Ezmeral ML Ops, enterprises can implement CI/CD workflows and standardize their ML pipelines. The
HPE Ezmeral ML Ops software platform supports every stage of the machine learning lifecycle — from supporting sandbox experimentation with
the choice of ML/DL frameworks and infegrating with model and code repositories to deploying and tracking models in production.

HPE Ezmeral ML Ops gives data scientists and developers the ability to quickly and easily build and train machine learning models. It allows data
scientists to manage and frack models built on any platform and deploy them into a scalable and secure production environment. Using HPE
Ezmeral ML Ops, data scientists can spin up containerized environments for distributed data processing, Machine Learning (ML), or Deep
Learning (DL) in minutes rather than weeks. It provides data science teams the flexibility to run their ML/DL workloads either on-premises, in
multiple public clouds, or a hybrid model and respond to dynamic business requirements in a variety of use cases.

With HPE Ezmeral ML Ops, Hewlett Packard Enterprise is making it easier for organizations to deliver a flexible and secure multitenant
architecture, with the agility, flexibility, and performance needed to address today’s evolving workload and application requirements. Its
deployment on HPE hardware can be done using pre-tested and optimized HPE Apollo building blocks on-premises, as well as in hybrid IT
architectures and a multi-cloud model.

SOLUTION OVERVIEW

HPE Ezmeral Runtime is a unified container software platform that is built on open-source Kubernetes and designed for both cloud-native
applications and non-cloud-native applications running on any infrastructure either on-premises, in multiple public clouds, in a hybrid model, or
at the edge. With HPE Ezmeral Runtime, container deployment and operations can be simplified at scale. HPE Ezmeral Runtime best practices
and automation can help streamline operations and improve SLAs. Hewlett Packard Enterprise delivers highly automated playbooks for Day O
deployments combined with best practices and configuration automation to set up container HA, backup/restore, security validation, and
monitoring to minimize manual overheads. HPE Ezmeral Container Platform includes KubeDirector—an open-source Kubernetes-based
controller that can be used to deploy non-cloud-native apps. The HPE Ezmeral Runtime provides an App Store of curated, prebuilt images for a
wide range of applications including machine learning (ML), analytics, IoT/edge, and CI/CD.

In this Reference Architecture, we discuss HPE Ezmeral ML Ops on Kubernetes and its components including the HPE Ezmeral Runtime. This is
a workload-optimized platform to serve the needs of DevOps teams, CI/CD workflow integration, application modernization, and hybrid cloud
solutions for the enterprise. This solution provides a cloud-like experience to customers from edge to core to cloud.

The HPE Apollo fit-for-purpose built server, storage, and networking hardware is the foundation for an infrastructure that provides both rapid
deployment and scaling while delivering the highest levels of performance, quality, and availability. This solution also showcases how to
modernize a legacy application using KubeDirector.

The combination of HPE Ezmeral Runtime (with pre-integrated HPE Ezmeral Data Fabric), and HPE Apollo servers deliver a composable
architecture that rapidly deploys containers supporting the latest application frameworks. Ultimately, this results in faster digital transformation
for the business. With services from HPE Pointnext and HPE GreenLake, the customer decides whether to purchase hardware upfront or move to
a pay-as-you-go consumption model.

Reference Architecture Page 5

Figure 1 shows the architecture of the HPE Ezmeral Runtime.

HPE Ezmeral ML Ops

data data
H3° - oy H?o a oy

| : ..] S: : Icmcd o]
-’ 3

. M
. m
| . Keras | = 4

| Data Processing | | Sandbox

Data Prep Build
Collaborate

HPE Ezmeral Container Platform kubernetes

Multi-tenant multi-cluster management for containerized applications — with pre-integrated data fabric and persistent container storage

. = _ ==
Compute = CPUs &= GPUs
(a— =

Storage NES

On-Premises Public Cloud

FIGURE 1. HPE Ezmeral ML Ops Architecture

HPE Ezmeral ML Ops brings the power of Kubernetes pods and Docker containers to the entire machine learning lifecycle to allow customers to
build, train, deploy, and monitor machine learning (ML) and deep learning (DL) models. It supports sandbox development (notebooks),
distributed training, and the deployment and monitoring of trained models in production. Project repository, source control, and model registry
features allow seamless collaboration.

Some of the specific features supplied at each stage of the machine learning lifecycle include:

Table 1 shows the steps of the ML Lifecycle.

TABLE 1. ML Lifecycle

Steps Description Users
|
Data Preparation « Select data Data Analyst

» Preprocess the data by formatting, cleaning, and sampling it
» Transform data by scaling, decomposing, and aggregating it

« Use for fast data ingest and movement

Model Building « Containerized sandbox environments Data Scientist, App
e Choice of ML/DL tools, interface, and frameworks Developers
e Secure access to shared data
« Data Scientists can now quickly spin up environments using their preferred data science tools

Model Training » Containerized, distributed ML/DL environment Data Scientist, Data

« Auto-scaling capabilities Engineer, DevOps Engineer

» Prepackaged images for Python, Spark, and TensorFlow

« Support multiple runtime engines for handling scoring logic (e.g. Python, R, etc.) Data Scientist,
« Can deploy distributed ML/DL environments such as TensorFlow, Caffe2, H20, BigDL, and SparkMLlib DevOps Engineer
« REST endpoints with token-based authorization

Model Deployment

E—

Reference Architecture Page 6

Steps Description Users
|

» Autoscaling and load balancing

 Integration with the model registry allows data scientists fo frack model versions and seamlessly update models

The following are some additional features of ML Lifecycle in HPE Ezmeral ML Ops:
« Model Monitoring

- Track, measure, and report model performance

- Save and inspect inputs and outputs for each scoring request

- Third-party infegrations track accuracy and interpretability

» Collaboration

Cl/CD workflows with code, model, and project repositories

Integration with GitHub and Bitbucket for project/code repository

- Storing multiple models (multiple versions with metadata) for various runtime engines

A/B or Canary testing o validate the model

NFS based project repository that eases collaboration

» Security and control

Secure multi-tenancy with integration to enterprise authentication mechanisms

Multitenancy and data isolation to ensure logical separation between each project, group, or department within the organization

- Enfterprise security and authentication mechanisms such as LDAP, Active Directory, and Kerberos

Share the same infrasfructure and access the same data sources for Al/ML and Big Data analytics workloads

» Hybrid deployment
- On-premises, public cloud, or hybrid
- Run on-premises on any infrastructure (including in multiple data centers)

- Supports multiple public clouds (Amazon® Web Services, Google® Cloud Platform, or Microsoft® Azure)

Provides a hybrid model for effective utilization of resources and lower operating costs

In addition fo the new features and business benefits delivered through the HPE Ezmeral ML Ops Software, the underlying functionality
delivered previously via the HPE Ezmeral Container Platform will continue to be part of the overall HPE Ezmeral Runtime framework and
infegrated with the new HPE Ezmeral Machine Learning Ops Software.

This Reference Architecture describes our solution testing performed in February 2021.

Document purpose: This Reference Architecture provides an overview of the deployment of HPE Ezmeral Runtime on servers — HPE Apollo
6500, HPE Apollo 2000. Also, it provides deployment steps of Kubeflow for pipeline management and HPE Ezmeral Data Fabric (formerly
‘MapR’) based Spark Operator.

SOLUTION COMPONENTS

HPE Ezmeral Runtime

HPE Ezmeral Runtime installs as a software layer between the underlying server infrastructure and the Big Data distribution, Al/ML libraries, and
applications. The use of containers is completely transparent, and HPE Ezmeral Runtime customers benefit from greater agility and bare-metal
performance due to the lightweight nature of containers. They can leverage the flexibility of containers to simplify the development of DevOps,
CI/CD pipelines, and applications across hybrid cloud deployments.

—

Reference Architecture Page 7

Key features

o Multi-cluster Kubernetes management: Fast, easy deployment, management and monitoring of multiple clusters with either out-of-the-box
or default configuration for networking, load balancing, and storage. This permits the user to run and manage different versions of
Kubernetes simultaneously, and seamlessly supports the in-place upgrades.

« Enterprise-ready persistent container storage: Fully managed, integrated, scale-out, and edge-ready persistent storage with the HPE
Ezmeral Data Fabric. This Data Fabric, along with DataTap and FS Mount functionality provides connectivity to data without copying the
data locally.

« 100% open-source Cloud Native Computing Foundation (CNCF) Kubernetes: With innovations such as KubeDirector—an open-source
Kubernetes-based controller to deploy non-cloud-native, stateful apps. HPE Ezmeral Runtime is a CNCF-certified Kubernetes distribution.

« One-click provisioning: Pre-packaged App Store with curated, prebuilt images for a wide range of applications including machine learning
(ML), analytics, loT/edge, CI/CD, and other modern apps. The pre-bundled contents of the apps include Helm Charts, Operators, YAML
configuration files, and KubeDirector scripts.

« Simplified installation and upgrade workflows: This includes installation on bare metal, Virtual Machines, and cloud instances.

» Flexible multi-cluster, multitenant control plane: Deploy multiple open-source K8s clusters and manage cloud K8s clusters (Example: GKE,
EKS) from an HPE Ezmeral Runtime control plane, without vendor lock-in or modification to native K8s.

« KubeDirector: The first and only K8s custom controller that deploys non-cloud native, monolithic distributed stateful applications (Example:
CDH, HDP, Confluent, Bring your own app).

» Streamlined access to K8s clusters and services for end-users: Gateway hosts isolate the HPE Ezmeral Runtime control plane and K8s
hosts from the user network. This uniquely provides load balancing tfo multi-master K8s cluster(s) and routes to K8s services exposed via
Node Ports and Ingress Conftrollers.

« Bare-metal performance: HPE Ezmeral Runfime provides storage I/0 optimizations to deliver data to applications without the penalties
commonly associated with virtualization or containerization. The compute cores and RAM in each host are pooled and then partitioned into
virtual resource groups based on tenant requirements.

» Self-Service Environments: Users can get up and run quickly with HPE Ezmeral Runfime Elastic Plane functionality. New containerized
environments are provisioned on-demand with just a few mouse clicks—whether they're transient for development and testing, or long-
running for a production workload. Data scientists and analysts can now quickly respond to dynamic business requirements for a variety of
use cases ranging from deep learning with Al Frameworks like TensorFlow to analytical SQL workloads running on Hadoop. Flexibility for
Tools of Choice: The HPE Ezmeral Runtime offers pre-integrated container images, including many of the most common Al and Big Data
tools, ready-to-run versions of major Hadoop distributions, such as Cloudera (CDH), Hortonworks (HDP), and MapR (CDP). Also includes
recent versions of Spark standalone as well as Kafka and Cassandra.

» Compute and Storage Separation: HPE Ezmeral Runtime disconnects analytical processing from data storage, giving users the ability to
independently scale compute and storage based on the needs of the workloads.

» Data Access from Any Storage: With HPE Ezmeral Runfime DataTap capability, users can access data from any shared storage system
(including HDFS as well as NFS) or cloud storage (e.g. Amazon S3). It is unnecessary need to make multiple copies of data or move data
before running an analysis. Sensitive data can stay in a secure storage system with enterprise-grade data governance without the costs and
risks of creating and maintaining multiple copies or moving large-scale data.

HPE Ezmeral Runtime goes beyond Hadoop and Spark support by leveraging the inherent infrastructure portability and flexibility of containers
to support distributed Al for both ML and DL use cases. The separation of compute and storage for Big Data and ML/DL workloads is one of the
key concepts behind this flexibility. Organizations can deploy multiple containerized compute clusters for different workflows (e.g. Spark, Kafka, or
TensorFlow) while sharing access to a common data lake. This also enables hybrid and multi-cloud HPE Ezmeral Runtime deployments, with the
ability fo mix and match on- and/or off-premises compute and storage resources to suit each workload. Furthermore, compute resources can be
quickly and easily scaled and optimized independently of data storage, thereby increasing flexibility and improving resource utilization while
eliminating data duplication and reducing cost.

Reference Architecture Page 8

Kubernetes features on HPE Ezmeral ML Ops

Data engineers, ML architects, and others can spin up containerized Kubernetes environments on scalable compute clusters with their choice of
machine learning tools and frameworks for Big Data, Al, and/or ML use cases. Some of the key features of Kubernetes on HPE Ezmeral ML Ops
include:

« Software installation: either on physical or virtual hosts located in a hybrid environment.
» Storage medium: a pre-integrated persistent container storage system known as the HPE Ezmeral Data Fabric.
« DataTaps and FS Mounts: access fo existing data sources, with no need to copy data back and forth. See DataTaps and FS Mounts.

o Multitenant, multi-cluster management: use open-source Kubernetes orchestration to run a variety of databases, analytics, Al/ML, CI/CD
pipeline, and other applications.

« Big Data Kubernetes tenants: HPE Ezmeral Runtime can deploy applications with KubeDirector, or onboard Kubectl deployed applications,
from the built-in Kubernetes Applications screen.

» KubeDirector: KubeDirector custom resource comes pre-installed with the HPE Ezmeral Runtime. The set of applications that can be
automatically launched into a cluster is found by accessing a Kubernetes tenant and then clicking the Applications tab. See the Applications
article at this link.

Kubernetes architecture with HPE Ezmeral Runtime
This diagram depicts the physical Kubernetes cluster architecture within the HPE Ezmeral Runtime. For details on Kubernetes physical
architecture, see the following link.

Y

Tenant 1, Tenant 2

Local

wor kstation/

Web terminal i o

EEEJC:;I Install/ _—

Kubectl ’ Config/ 0SS Kubernetes cluster deployed by KubeAPI HCP agent

Watch/
Upgrade

: i

1]

I l

1]

I l

1 1

I l

' I

1 1

l l

I 1

l l

H 1

l l

1 1

' 1

1 1

" 1

l I

I 1

i : Control Plane ontovirtual or physical
: i
I l
1 : kubectl
- i
I l
l l
- 1
I l
i 1
l I
i 1
I 1
l I
1 1
1 1
h 1
l I
) 1
1]
I l
. 1
1 1
. 1
1 1
' l
" 1
l l
i 1
I l

hosts (v1.14) Tenant 5, Tenant 6

Worker Hosts
KubeAPI HCP agent (Kubernetes)

Tenant 3, Tenant 4

Cloud-based Kubernetes duster
optionally registered and managed by
the Control Plane (optional; v1.14)

0SS Kubernetes cluster deployed by
Control Plane ontovirtual or physical
hosts (v1.15)

Multiple Kubernetes Clusters

FIGURE 2. Kubernetes physical architecture in HPE Ezmeral Runtime

—

http://docs.bluedata.com/52_about-datataps
http://docs.bluedata.com/52_about-fs-mounts
https://docs.containerplatform.hpe.com/53/reference/kubernetes-applications/general/Applications_Overview.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/Kubernetes_Physical_Architecture.html

Reference Architecture Page 9

HPE Ezmeral ML Ops
With the HPE Ezmeral ML Ops solution, data science teams involved in the ML/DL model lifecycle can benefit from the industry’s most
comprehensive operationalization and lifecycle management solution for enterprise Al.

Figure 3 shows these features in the ML/DL lifecycle causal relationship. For further details, see HPE Ezmeral Container Platform 5.3
Documentation.

Enterprise grade security and control

— Containerized sandbox environments

— Choice of ML/DL tools, interfaces
and frameworks

— Secure access to shared data

Data
Prep

-+

— Containerized ML/DL environments
= Elastic clusters

Git integration

— Model registry
— Project repository

2

— Containerized deployment with scalable
Deploy endpoints

— Qut of the box runtime engines

— Autoscaling and load balancing

— End-to-end visibility
— 3rd party integrations

FIGURE 3. ML/DL lifecycle

HPE Ezmeral ML Ops delivers the following Al/ML features in addition to the HPE Ezmeral Runtime functionality:

Leverage the power of containers o create a complex machine learning and deep learning stacks that include distributed TensorFlow, Apache
Spark on Yarn with Kerberos, H20, and Python ML and DL toolkits.

Spin-up distributed, scalable, machine learning, and deep learning training environments on-premises, public cloud, or in a hybrid model.

Support for a variety of programming languages and open-source tools designed o support even the most complex ML pipelines. For
example, start with data pre-processing in Spark with Scala, followed by model development with TensorFlow on GPUs, and finally model
deployment on CPUs with TensorFlow runtime.

The model registry stores models and versions created within HPE Ezmeral ML Ops, as well as those created using different tools/platforms.
Improves the reliability and reproducibility of machine learning projects in a shared project repository (GitHub).

Enables the deployment of models in production with secure, scalable, highly available endpoint deployment with out-of-the-box auto-scaling,
and load balancing.

Enables out-of-the-box application images to be rapidly deployed in containerized environments — sandbox, distributed fraining, or serving
(inferencing).

Enables the creation of custom application images with any combination of tools, library packages, and frameworks.

For additional information, see HPE Ezmeral ML Ops.

—

https://docs.containerplatform.hpe.com/53/reference/universal-concepts/About_HPE_Ezmeral_ML_Ops.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/About_HPE_Ezmeral_ML_Ops.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/About_HPE_Ezmeral_ML_Ops.html

Reference Architecture Page 10

Kubeflow for Pipeline Management

Kubeflow is an open-source project designed fo make machine learning workflows on Kubernetes simple, portable, and scalable. Kubeflow is
sponsored by Google and inspired by TensorFlow Extended, or TFX, the company’s internal machine learning platform. Originally intended to
simply allow TensorFlow users o run training jobs on their Kubernetes clusters, the project now integrates a broad set of tools in support of
many steps in an end-to-end machine learning process.

Kubeflow includes components for:

» Launching Jupyter Notebooks
 Building ML Pipelines

e Training Models

o Tracking Experiment Metadata
¢ Hyperparameter Tuning

* Serving Models

« Monitoring

« Confinuous integration and deployment for ML

Spark within HPE Ezmeral Runtime

Spark is a data processing framework that can rapidly perform processing tasks on massive data sets and can also allocate data processing tasks
across multiple nodes. Spark can work in stand-alone mode or together with other distributed computing tools. These features are the key to Big
Data and ML/DL, which require significant computing power to crunch through large data stores. It also helps the developers by getting rid of
some of the programming burdens with an easy-to-use API that abstracts much of the monotonous work of distributed computing and big data
processing.

Spark has become one of the key big data distributed processing frameworks in the world. It can be deployed in a variety of ways and provides
native bindings for the Java, Scala, Python, and R programming languages. In addition, it supports SQL, streaming data, machine learning, and
graph processing.

Another Spark advantage is increased performance using its in-memory data engine. It can run tasks up to several orders of magnitude faster
than MapReduce in certain situations. Furthermore, it offers the developer-friendly Spark API which hides much of the complexity of a distributed
processing engine behind simple method calls.

The tutorial in the Spark Operator with K8s section describes how to set up and execute a Spark framework within the HPE Ezmeral Runtime
which allows users to run Spark workloads on Kubernetes clusters. A user may instantiate the Spark framework instance on a dynamic cluster
using the Spark operator. The Spark operator is a Kubernetes custom resource that is installed in a tenant namespace to support the
on-demand deployment of Spark Executor pods. These pods are deleted once job execution completes.

Spark Driver r
w/ K8S context ' ' @
Kube API

(kubectl apply) - . — | . . %,’
ob
c 3
g |&°o
————— D |y

-
Spark Executor pods ﬁg E E =

=)

FIGURE 4. Spark Operator on Kubernetes

—

Reference Architecture Page 11

BEST PRACTICES

Deploying the HPE Ezmeral Runtime on the HPE Elastic Platform for Analytics (EPA) platform provides great flexibility in deploying workloads
and managing resource growth, by decoupling storage from compute. This section is intended to provide high-level guidance and best practices
for deploying HPE Ezmeral Runtime, and HPE Ezmeral ML Ops solution with the HPE Elastic Platform for Analytics.

HPE EPA Platform configuration for HPE Ezmeral Runtime
HPE Ezmeral Runtime uses four distinct host types, as shown in Table 2, with the recommended HPE EPA server model.

TABLE 2. HPE Ezmeral Runtime Host Types (Intel)

Host Type HPE Server Model
|

HPE Apollo 2000
Primary Controller, Shadow Controller, Arbiter Needs 3 x XL170r for controller nodes with HA

HPE Apollo 2000 (4 x HPE ProLiant XL170r)
Kubernetes— Master/Worker Recommend minimum 3 x HPE ProLiant XL170r for Kubernetes Worker/Compute nodes

Kubernetes — Compute with GPUs « HPE Apollo 2000 with up to 2 x HPE ProLiant XL190r each with 1 or 2 GPUs
* HPE Apollo 6500 with HPE ProLiant XL270d with 4 or 8 GPUs
e HPE ProLiant DL380 with up to 4 GPUs

HPE Apollo 2000
Kubernetes - Gateway Recommend 2 x HPE ProLiant XL170r

TABLE 3. HPE Container Platform Host Types (AMD)

Host Type HPE Server Model
__|

HPE Apollo 2000 Gen10 Plus

Primary Controller, Shadow Controller, Arbiter Needs 3 x HPE XL225n Gen10 Plus for controller nodes with HA

4 x HPE ProLiant DL325 Gen10 Plus
Kubernetes— Master/Worker Recommend minimum 3 x HPE ProLiant DL385 Gen10 Plus for Kubernetes Worker/Compute nodes
Kubernetes — Compute with GPUs HPE Apollo 6500 (4 x HPE ProLiant DL675d Gen10 Plus)

HPE Apollo 2000 Gen10 Plus
Kubernetes - Gateway Recommend 2 x HPE XL225n Gen10 Plus

HPE Apollo 2000 Gen10 Plus Compute Servers

The HPE Apollo 2000 Gen10 Plus System is a shared infrastructure chassis with flexible support for up to four (4) HPE ProLiant XL225n Gen10
Plus servers (AMD) or up to four (4) HPE ProLiant XL220n Gen10 Plus servers (Intel®) or two (2) XL290n Gen10 Plus servers (Intel), helping
increase rack space density. Server nodes can be serviced without impacting the operation of other nodes in the same chassis for increased
server up-time. It delivers the flexibility to tailor the system to the precise needs of demanding high-performance computing (HPC) workloads
with the right compute, flexible /O, and storage options. The system can be deployed with a single server, leaving room to scale as customers'
needs grow, bringing the power of supercomputing to data centers of any size. It is ideal for HPC applications in industry verticals like
manufacturing, oil and gas, life sciences, and financial services.

¢ HPE ProLiant XL170r Gen10 Server: For compute-intensive workloads, HPE ProLiant XL170r delivers four servers in a single 2U chassis.
Each HPE ProLiant XL170r server is serviced individually without impacting the operation of other servers sharing the same chassis to
provide increased server uptime.

* HPE ProLiant XL225n Gen10 Plus Server: 1U Node Configure-to-order Server supports the full stack of 2nd generation AMD® EPYC™
7000 Series processors.

For more information, see HPE Apollo 2000 servers.

HPE Apollo 6500 Gen10 Plus GPU System

Built for the exascale era, the HPE Apollo 6500 Gen10 Plus System accelerates performance with NVIDIA® HGX A100 Tensor Core GPUs and
AMD Instinct™ MI100 with Infinity Fabric™ accelerators to take on some of the most complex HPC and Al workloads. This purpose-built platform
provides enhanced performance with premier graphics processing units (GPU), fast GPU interconnect, high-bandwidth fabric, and configurable

—

https://buy.hpe.com/us/en/servers/apollo-systems/apollo-2000-system/apollo-2000-system/hpe-apollo-2000-gen10-plus-system/p/1012684166

Reference Architecture Page 12

GPU topology, providing rock-solid reliability, availability, and serviceability (RAS). Configure with single or dual processor options for a better
balance of processor cores, memory, and I/O. Improve system flexibility with support for 4, 8, 10, or 16 GPUs and a broad selection of operating
systems and options, all within a customized design fo reduce costs, improve reliability, and provide leading serviceability.

* HPE ProLiant XL675d Gen10 Plus: It is a dual-processor system for the NVIDIA HGX A100 8-GPU or AMD Instinct with 8 fo 10 double-wide
or 16 single-wide PCle accelerators.

For more detailed information, see HPE Apollo 6500 Gen10 Plus system.

HPE and NVIDIA GPUs

HPE ProLiant servers offer NVIDIA accelerators for high-performance computation for deep learning, high-performance computing (HPC)
workloads, or graphics. The NVIDIA accelerators for HPE ProLiant servers seamlessly integrate GPU computing with select HPE server families.
Designed for power-efficient, high-performance supercomputing, NVIDIA accelerators deliver dramatically higher application acceleration than a
CPU-only approach for a range of deep learning, scientific, and commercial applications. The thousands of NVIDIA CUDA® cores of each
accelerator allow it to divide large computing or graphics tasks into thousands of smaller tasks that can be run concurrently, thus enabling much
faster simulations and improved graphics fidelity for extremely demanding 3D models.

For more detailed information, see HPE Al and deep learning.

HPE Intelligent System Tuning (IST)
Available in HPE ProLiant Gen10 servers, HPE Intelligent System Tuning is a new set of revolutionary capabilities that deliver higher levels of
performance, agility, and control to the server environment. With these groundbreaking new features, we can:

« Dynamically tune the servers’ performance to match the needs of each workload

 Drive real cost savings

o Radically improve server performance

HPE ProLiant Gen10 Servers offer a UEFI configuration option to help customers tune their BIOS settings by using the known workload-based
tuning profiles developed by the HPE performance engineering team. The default BIOS settings on HPE servers provide a balance between
performance and power efficiency. For workloads running on the HPE ProLiant XL190r Gen10 and HPE Apollo 6500 servers with GPUs, the

recommended workload profile is Graphic Processing which disables power management and virtualization to optimize the bandwidth between
I/O and memory.

For more information about how to tune an HPE ProLiant Gen10 server using the workload profiles, refer to the UEFI workload-based
Performance Tuning Guide for HPE ProLiant Gen10 servers.

TABLE 4. HPE Ezmeral Runtime host CPU and memory recommendations (Intel)

Host Type Deployment Size Memory Processor
. __|
Ezmeral - Controller, Shadow Controller, Arbiter Starter 192 GB 2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz
Medium 384-768 GB 2 x Intel® Xeon® Gold 6242 - 16C 2.8 GHz
K8s — Master/Compute Starter 192 GB 2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz
Medium 384-768 GB 2 x Intel® Xeon® Gold 6226 - 12C 2.7 GHz
K8s - GPU Starter 384 GB 2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz
Medium 384-768 GB 2 x Infel® Xeon® Gold 6226 - 12C 2.7 GHz
Large 384-768 GB 2 x Intel® Xeon® Gold 6242 - 16C 2.8 GHz
K8s — Gateway All 192 GB 2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz

TABLE 5 HPE Ezmeral Runtime host CPU and memory recommendations (AMD)

Deployment Size Memory

Host Type Processor
Starter 192 GB AMD EPYC 7742 - 64C 2.25GHz
Ezmeral - Controller, Shadow Controller, Arbiter Medium 384-768 GB AMD EPYC 7742 - 64C 2.25GHz

—

https://buy.hpe.com/us/en/servers/apollo-systems/apollo-6500-system/apollo-6500-system/hpe-apollo-6500-gen10-plus-system/p/1013092236
https://www.hpe.com/us/en/solutions/artificial-intelligence.html
https://support.hpe.com/hpsc/doc/public/display?docId=a00018313en_us

Reference Architecture Page 13

Deployment Size Memory

Host Type Processor

K8s — Master/Compute Starter 192 GB AMD EPYC 7262 - 8C 3.2GHz
Medium 384-768 GB AMD EPYC 7262 - 8C 3.2GHz

K8s - GPU Starter 384 GB AMD EPYC 7542 - 32C 2.9GHz
Medium 384-768 GB AMD EPYC 7542 - 32C 2.9GHz
Large 384-768 GB AMD EPYC 7542 - 32C 2.9GHz

K8s — Gateway All 192 GB AMD EPYC 7742 - 64C 2.25GHz

To assist in sizing an HPE Ezmeral Runtime cluster, Hewlett Packard Enterprise has developed a sizing tool.

NOTE

HPE Apollo Gen10 Plus systems support a variety of flexible memory configurations. But for optimal performance, it is recommended to balance
the total memory capacity across all installed processors and make use of all six memory channels per CPU with up to fwo DIMM slots per
channel.

Storage

A typical Kubernetes environment may have pods frequently coming and going. Large Kubernetes environments, such as a public cloud, may
handle pools of systems where new hosts are added to support pod and cluster placement. In the HPE Ezmeral Runtime, a Data Fabric cluster is
a Kubernetes Custom Resource that functions as a storage cluster providing access to PVCs, tenant storage, shares, and other storage needs. In
a Data Fabric cluster:

The hosts (called nodes) commit considerable disk resources that may include NVMe and enterprise-class SSDs

* The Data Fabric cluster can be deployed on a small number of nodes

Unlike a typical k8s environment, pods are not deleted frequently
» The Data Fabric cluster must account for host resource profiles to guarantee core pod availability

HPE Ezmeral Runtime includes native support for HPE Ezmeral Data Fabric. This automates many manual steps and allows the creation of Data
Fabric clusters like that used for creating Compute Kubernetes clusters (see Creating a New Data Fabric Cluster and Creating a New Kubernetes
Cluster). Each Data Fabric cluster resides on nodes. See Kubernetes Worker Installation Overview and Kubernetes Data Fabric Node Installation

Overview.

Ephemeral Storage (Node Storage)

Ephemeral Storage is built from the local storage in each host and is used for the disk volumes that back the local storage for each virtual node.
Using SEDs (Self-Encrypting Drives) will ensure that any data written to node storage is encrypted on write and decrypted on read by the OS. A
fenant can optionally be assigned a quota for how much storage the nodes in that tenant can consume.

Node Storage :
(local 10 CONMAINEIS) &, ... euuerrnernnrrnnesnranrernnssssesnsesnnsssosnsnns x

FIGURE 5. Storage

Virtual nodes/containers running on public cloud VMs (such as AWS EC2) uftilize storage within the instance (such as AWS Elastic Block Storage,
or EBS) as node storage.

—

https://solutionsizers.ext.hpe.com/EPASizer/
https://docs.containerplatform.hpe.com/53/reference/hpe-ezmeral-data-fabric-admini/Creating_a_New_Data_Fabric_Cluster.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/clusters/Creating_a_New_Kubernetes_Cluster.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/clusters/Creating_a_New_Kubernetes_Cluster.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/kubernetes-hosts/installing-kubernetes-hosts/Kubernetes_Worker_Installation_Overview.html
https://docs.containerplatform.hpe.com/52/reference/kubernetes/kubernetes-administrator/kubernetes-hosts/installing-kubernetes-hosts/Kubernetes_Data_Fabric_Node_Installation_Overview.html
https://docs.containerplatform.hpe.com/52/reference/kubernetes/kubernetes-administrator/kubernetes-hosts/installing-kubernetes-hosts/Kubernetes_Data_Fabric_Node_Installation_Overview.html

Reference Architecture Page 14

Persistent Storage

Deploying a persistent data fabric is supported on the local disks within the hosts. This local storage can serve as either HDFS storage or as
persistent volumes for Kubernetes clusters. Persistent volumes for Kubernetes stateful clusters are seamlessly available either from the native
persistent data fabric or Nimble Storage using the storage interface driver (CSI) that is deployed during cluster creation.

Tenant Storage for Local Data Access

HPE Ezmeral Runtime can deploy a Data Fabric (MapR) file system on local disks for Tenant Storage within the servers running the K8s services.
The DataTap interface then surfaces the physical locations of the Tenant Storage data blocks to the containers that make up the virtual cluster.
This allows the Big Data task scheduling software running within the containers to route Big Data tasks to the containers running on the physical
servers where copies of the required data blocks reside. This behavior mimics bare-metal Big Data deployments, thereby preserving the
performance advantages of data locality without losing the flexibility and agility of a container-based virtualized compute platform. It also allows
Big Data datasets to persist beyond the lifespan of a given Big Data cluster.

Operating system storage
For all host types, the recommended storage for the operating system is two 960 GB SSDs in a RAID 1 configuration.

HPE Ezmeral Runtime storage recommendations
Table 4 lists the recommended minimum storage configuration for each host type.

TABLE 5. Storage recommendations for HPE ProLiant XL170r, HPE ProLiant XL190r, and HPE ProLiant XL270d

Host Type K8s - Storage Type Storage Recommendation
. __|
oS 2 x 960 GB SSD configured as RAID 1
Ezmeral - Controller, Shadow Controller, Arbiter Ephemeral Storage 3 x 6.4 TB mixed-use SSD.
Local Data Fabric 0-1x 2 TBSATA 7.2 SFF HDD.
K8s — Master/ Compute oS 2x 960 GB SSD configured as RAID 1
Ephemeral Storage 3 x 6.4 TB mixed-use SSD.
Local Data Fabric 1x2 TBSATA 7.2 SFF HDD.
K8s - Gateway oS 2 x 960 GB SSD configured as RAID 1
NOTE

The HPE ProLiant XL170r and HPE ProLiant XL190r have six drive bays. Two are used for the OS drives and four are available for node storage
and local tfenant storage. For additional high availability, it is recommended that the node storage disks be configured as RAID 5. Choose the
appropriate size and number of disks based on node storage and local tenant storage space requirements.

Networking
HPE Ezmeral Runtime operates on two networks, as shown in Figure 6 below.

The two networks are laid out as follows:

« Network for the Controller, Worker, and Gateway hosts: This network must be both routable and part of the organization’s network that is
managed by that organization’s IT department.

Reference Architecture Page 15

« Network for virtual nodes (containers): HPE Ezmeral Runtime creates and manages this network, which can be either public (routable) or
private (non-routable). For Kubernetes, Canal is used as the Container Network (CN) Network Provider. The container network is typically
private (non-routable) instead of public (routable). See detailed description of Public (Routable) Virtual Node Network and Private (Non-
Routable) Virtual Node Network.

Top of Rack (TOR) Switch EEEMY

10.16.1.1
10.16.1.2

192168 x.xM6

g
)
=

1

i

Network for Network for
virtual deployment
nodes hosts

FIGURE 6. Networking layout

We recommend deploying 25GB Ethernet adapters on all the hosts. Table 6 shows the recommended networking hardware for the clusters.

TABLE 6. HPE Ezmeral Runfime networking recommendations

Host Type Network Recommendation
|
All host types HPE Eth 10/25GB 2P 640FLR-SFP28 Ethernet Adapter

KUBEFLOW WITH HPE EZMERAL ML OPS

Kubeflow conceptual overview
HPE Ezmeral Machine Learning Ops (HPE Ezmeral ML Ops) 5.3 upgraded to Kubeflow version 1.2.

Kubeflow is an open-source platform that makes the deployment of machine learning workflows in Kubernetes simple, portable, and scalable.
Kubeflow deploys a suite of machine learning (ML) applications to Kubernetes that multiple users can securely access.

Kubeflow uses the Istio Gateway and LDAP authentication with the Dex authentication service to authenticate and authorize user access. Each
user is assigned a profile based on a Kubernetes namespace. The profile provides an isolated view of Kubeflow for each user.

A Kubernetes administrator can install Kubeflow in environments where the computer network can access the internet, as well as in air-gapped
environments where the network is isolated from outside networks.

At a high level, the execution of a pipeline proceeds as follows:
« Python SDK: Language use in the creation of components or pipelines using the Kubeflow Pipelines.
o DSL Compiler: Convert the pipeline’s Python code into a static configuration (YAML).

» Pipeline Service: Call during the creation of a pipeline running from the static configuration (YAML).

—

https://docs.containerplatform.hpe.com/53/reference/universal-concepts/Networks_and_Subnets.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/Networks_and_Subnets.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/Networks_and_Subnets.html

Reference Architecture Page 16

» Kubernetes Resources: Allocate when Pipeline Service calls the Kubernetes API server to create the necessary resources (CRDs) to run the
pipeline.

« Orchestration Controllers: A set of orchestration controllers execute the containers needed to complete the pipeline. An example controller is
the Argo Workflow (demonstrated below) controller, which orchestrates task-driven workflows.

« Artifact Storage: The Pods store two kinds of data:

- Metadata: Experiments, jobs, pipeline runs, and single scalar metrics. Metric data is aggregated to sort and filter. Kubeflow Pipelines stores
the metadata in a MySQL database.

- Artifacts: Pipeline packages, views, and large-scale metrics (time series). Use large-scale metrics to debug a pipeline run or investigate an
individual run’s performance. Kubeflow Pipelines stores the artifacts in an artifact store like a Minio server or Cloud Storage.

« The MySQL database and the Minio server are both backed by the Kubernetes Persistent Volume subsystem.

* Persistence Agent and ML Metadata: The Pipeline Persistence Agent (PPA) watches the Kubernetes resources created by the Pipeline
Service and persists the state of these resources in the ML Metadata Service. The PPA records the set of containers along with their inputs
and outputs.

* Pipeline Web Server: The Pipeline web server gathers data from various services to display relevant views: the list of pipelines currently
running, the history of pipeline execution, the list of data artifacts, debugging information about individual pipeline runs, execution stafus of
the individual pipeline runs.

Chainer Jupyter MPI MXNet
ML tools
PyTorch scikit-learn TensorFlow XGBoost
[Jupyter notebook web | " Hyperparameter) PvTorch
| app and controller y OII'C i
. app Serving Istio
Chainer operator Fairing
_' : - : — TensorFlow Argo
Kubeflow | MPI operator Metadata Serving
applications and T L
scaffolding | MXNet operator Pipelines Seldon Core Brarnethene
PyTorch operator .' | Kubeflow UI
Spartakus

TFJob operator : | KFServing

| XGBoost operator | TensorFlow batch
. | prediction

Kubernetes

FIGURE 7. Kubeflow is a platform for components of ML systems on Kubernetes

Katib hyperparameter tuning
Katib is a Kubernetes-based system for hyperparameter tfuning and neural architecture search. Katib supports many ML frameworks, including
TensorFlow, MXNet, PyTorch, XGBoost, and others. It can be used to submit experiments and monitor results.

—

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/argoproj/argo
https://docs.minio.io/
https://cloud.google.com/storage/docs/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

Reference Architecture Page 17

Argo Workflow

Argo Workflows is an open-source container-native workflow engine for orchestrating parallel jobs on Kubernetes. Argo Workflows is
implemented as a Kubernetes CRD (Custom Resource Definition). Argo Workflows can run on any Kubernetes cluster within the HPE Ezmeral
Runtfime and orchestrate highly parallel jobs on Kubernetes.

Istio Prometheus

Prometheus is an open-source monitoring system and time series database. Prometheus can be used with Istio to record metrics that frack the
health of Istio and applications within the service mesh. Metrics can be visualized metrics using tools like Grafana and Kiali. The HPE Ezmeral
Runtime supports the deployment of Prometheus

HPE EZMERAL ML OPS USE CASES

Much like pre-DevOps software development, data science organizations still spend a significant amount of time and effort moving projects from
development to production. Model version control and code sharing are manual, and there is a lack of standardization on tools and frameworks
thus making it tfedious and time-consuming to productize machine learning models.

HPE Ezmeral Machine Learning Ops (HPE Ezmeral ML Ops) extends the capabilities of the platform and brings DevOps-like agility to enterprise
machine learning. With the HPE Ezmeral ML Ops, enterprises can implement DevOps processes to standardize their ML workflows.

HPE Ezmeral ML Ops provides data science teams with a platform for their end-to-end data science needs with the flexibility to run their
machine learning or deep learning (DL) workloads on-premises, in multiple public clouds, or in a hybrid model and respond to dynamic business
requirements in a variety of use cases.

To complete the use case using the default datasets, 100GB of space will be required.

NOTE
The examples and documentation provided in this section are meant to supplement, not replace the HPE Ezmeral Runtime manuals.

Software components
This section describes the soffware versions utilized in the solution as well as notes any special installation or configuration requirements.

Table 7 lists the specific versions of the software used in this solution.

TABLE 7. Software Versions

Component Versions
|

HPE Ezmeral Runtime 531

CentOS CentOS Linux release 7.7.1908

Kernel 3.10.0-1062.el7.x86_64

389 Directory Server 1151-37

Active Directory/LDAP: HPE Ezmeral ML Ops requires Active Directory (AD)/LDAP user authentication and supports the member of the
aftribute. The use cases use the following AD/LDAP users which can be substituted with existing LDAP users.

TABLE 8. AD/LDAP users
Projects User Member Of Role
ML Ops/Kubeflow/Spark Fraudadmin Fraud Admin
ML Ops/Kubeflow/Spark fraudanalyst Fraud Member
ML Ops/Kubeflow/Spark imageadmin Image Admin
ML Ops/Kubeflow/Spark imageanalyst Image Member

—

Reference Architecture Page 18

Hardware components
The cluster was configured with AD/LDAP authentication, and platform high availability as shown in Figure 8.

FIGURE 8. HPE Ezmeral ML Ops cluster

A complete list of the hardware components and service configuration is listed in Table 9. This is an example of how an HPE Ezmeral Runtime
cluster could be deployed. The number of servers and types of servers will vary based on the workload.

TABLE 9. Hardware details

oS Node Tenant K8s/EPIC
Storage Storage Storage Containers
. __|

Qty Host Service Server Type GPU CPU Cores Memory

HPE Ezmeral Runtime Cluster

Ezmeral

3 HPE ProLiant XL225n Gen10 Plus 0 8 128 GB 127TB 127TB None
Controller N
Ezmeral)
1 HPE ProLiant XL225n Gen10 Plus 0 8 128 GB 12TB None None
Gateway N
1 K8s Master/ | ioe proLiant DL325 Gen10 Plus 0 32 256GB 127TB 1278 None
Compute Y
2 éiﬁcomp“m HPE ProLiant XL675d Gen10 Plus 4 2x32 256GB 127TB 127TB None v
1 K8s Compute HPE ProLiant DL385 Gen10 Plus 0 2x32 256 GB 127TB 127TB None Y
Qty Host Service Server Type CPU Cores Memory OS Storage NFS Storage

. __|
Supporting Services

1 MIT Kerberos HPE ProLiant DL360 24 196 GB 127TB 10TB
LDAP 389 Directory Genl0
Server
NTP Time Service
DNS Name Server
NFS Storage

Use case NYC taxi rides

The use case provided demonstrates how HPE ML Ops provides an end-to-end solution for the complete lifecycle to build, train, deploy, and
monitor ML and DL models in multitenant enterprise environments. The use case demonstrates the NYC taxi ride prediction using TensorFlow.

—

Reference Architecture Page 19

The dataset contains a sample of approximately 375,000 NYC taxi rides from January-June 2019. Pickup and drop-off locations are specified as
location ID numbers.

Sample data can be found at https://github.com/bluedatainc/solutions/tree/master/MLOps/examples/NYCTaxi/Taxi Datasets.

NOTE
The examples and documentation provided in this section are meant to supplement, not replace the manuals.

The AI/ML workflow allows the user to build, train, and deploy a model and then send API requests to that model to make predictions. This
workflow consists of three high-level steps that must be performed by users with different roles in the following order:

o Kubernetes Administrator

e LDAP/AD Administrator (For Jupyter Notebook KDapp use)

Project Administrator

e Project Member (Data Scientist)

Persona: Kubernetes Administrator

-Verify that HPE Ezmeral Runtime is licensed for at least the number of CPU cores that will be used for the new Kubernetes cluster. HPE

Ezmeral ML Ops requires a separate license for each of the CPU cores that will be used in Al/ML projects. Open the system settings screen,
and then select the License tab to verify the number of CPU cores licensed for HPE Ezmeral ML Ops as shown in Figure 9.

License Summary

jed Sep 08 2021

License(s)

O Name Exo

D HPE Container Platform and Machine Learning Ops Instant-on

FIGURE 9. License Summary

https://github.com/bluedatainc/solutions/tree/master/MLOps/examples/NYCTaxi/Taxi%20Datasets
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__step1
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__ldap-ad-admin
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__step2
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__step3

Reference Architecture

-Configure LDAP/AD authentication, If required.

User Authenftication

Enable Multi Domain

Directary Server LDAP
Security Protocol LDAPS
Service Locations 172.24.2.21 636
Bind Type Search Bind
User Affribute cn
Group Attribute memberOf
Base DN de=perflab,dc=hp,dc=com
Bind DN
(Optional)

Bind Password

(Optional)
Verify Peer

Enable SAML S50

FIGURE 10. User Authentication

Page 20

Reference Architecture Page 21

-CreaTe a Kubernetes cluster. Be sure to provide LDAP server information in Step 2: Authentication screen; LDAP must be configured fo run

HPE Ezmeral ML Ops in a Kubernetes cluster.

o Host Canfigurations

Cluster Size

o Cluster Configurations

Q Authentication

Q Application Configurations

77.8% 100% 77.5%
CRU Memory GPU Ephemeral Storage
56 0f 72 1131.9 of 1508 (GE) 8of8 1266.8 of 1633 (GB)
Selected Hosts
pdate
Host Role CRU Memory (GB) SPU Ephemeral (GB) Persistent (GE) Disks

zam-04 perflabhp.com master 16 3775 0 372.6 7452 Ephemeral Disks: /dev/sdb
Persistent Disks: fdev/sdf
ezam-0% perflab hp.com warker 40 754 & | 8843 894 2 Ephemeral Disks: /dev/sdb

| Provious |

FIGURE 11. Kubernetes cluster creation

Persistent Disks: /dev/sdc

-Assign at least one user to be a Kubernetes Administrator for the Kubernetes cluster just created.

User Assignment

USERS 4

FIGURE 12. Admin Assignment to K8s cluster

KUBE}

micluster

MANAGE CLUSTER ROLE

e .. |

-ExecuTe the following commands on the Kubernetes cluster master hosts to create LDAP/AD secret labels before creating tenants:

kubectl config set-context --cuccent --namespace=hpecp
kubectl label seccets hpecp-ext-auth-seccet “kubecnetes.hpe.com/cesoucce-tenant-visibility”="Teue”

m-84 ~1# kubectl config set-context --current --namespace=hpecp

"kubernetes-admin@k8s-6" modified.

m-84 ~]# kubectl label secrets hpecp-ext-auth-secret "kubernetes.hpe.com/resource-tenant-visibility"="True"
bernetes.hpe.com/resource-tenant-visibility' already has a value (true), and --overwrite 1s false

[root@ezam-04 ~1# [

e Summary

Reference Architecture Page 22

-CreaTe a new Kubernetes Al/ML project, being sure to:
a. Check the Al/ML Project checkbox.

Tenant Name mitenant
Tenant Descripfion mitenant
K8s Cluster ter

Adopt Existing Namespace
(Dptional}

Specified Namespace Mame mitenant
(Dptional}

|s Namespace Owner
(Dptional}

Map Services To Gateway
(Dptional}

ML Cps Project L

Quotas External Authentication

Maximum Cores 32

(License Available Capacity unlimited)

Maximum Memory (GB)

Maximum Ephemeral Storage (GEB)
GPU Devices

Maximum Tenant Storage(GB)

Maximum Persistent Storage (GB)
FIGURE 13. Tenant Creation

b. Enfer the external LDAP/AD user group in the Exfernal Authentication tab.

Guotas External Authentication

External User Groups cn=Image,ou=Groups dc=perflab,dc=hp,dc=com
(Optional}

Member "

FIGURE 14. External Authentication

—

Reference Architecture Page 23

-Assign at least one user to be a Kubernetes Project Administrator for the newly created project.

User Assignment

USERS 4 TENANTS 3

ant

admin i mirsnant
MANAGE TENANT ROLE

Member

& imageadmin KUBERNETES CLUSTERS :
® Admin

Site Admin

FIGURE 15. Admin Assignment to the tenant

LDAP/AD Administrator (For Jupyter Notebook KDapp use)
If the environment will include the ability fo use the Jupyter Notebook KubeDirector application (KDapp), LDAP server group seftings must be
changed to include all members of the group. For details, see HPE Ezmeral Container Platform 5.3 Documentation.

Persona: Kubernetes project administrator
-Assign at least one user to the new project.

User Assignment

USERS 4 TENANTS 3 imageanalyst

? mitenant

MANAGE TENANT ROLE

® Member

Admin

leluster EEES

FIGURE 16. Member assignment to the tenant

NOTE
All Al/ML project users (Project Members and Project Administrators) must be LDAP/AD users. They cannot be authenticated using local
authentication.

https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__ldap-ad-admin

Reference Architecture Page 24

-Configure one or more global source control configurations.

Create Source Control

Label

Configuration Name™ (7)

mitestglobalsrc

Description (2) mlops global src control

Source Control Configuration

Source Control Type™ (7) Github -
Repository URL" () https:{fgithub.com/hansha-sharma/solutio ns.giﬂ

Authenfication Type® (3) Token -

Branch (3)

Working Directary (%)

Proxy Protocol ()

Proxy Host (7)

Proxy Port (%)

Username (7)

Email (7)

Token (3)

Submit

FIGURE 17. Global Source Control Configurations

Persona: Kubernetes project member (Data Scientist)
-Log out of the web interface, and then log back in as the user that was created or assigned in step 1 of the Kubernetes Administrator
workflow described above.

Reference Architecture Page 25

-Configure af least one individual source control repository. Be sure to copy the name of the secret created for this source control.

Create Source Control

— Label

. . e I
Configuration Name* (3) | indsrcctrl

H H Py . o
Description (3) | individual src ctrl

Global Configuration® () mitestglobalsrc -
— Source Control Configuration
Source Control Type* () Github -

Repository URL™ (3) https:/fgithub.com/hansha-sharma/sclutions.git

Authentication Type™ (7) Tralkam =

Branch® (3) | master
Working Directory (7)
Proxy Protocol (3) | hiips
Proxy Host (3) | hostname.com
Proxy Port (3) | g
Username® () | hansha-sharma

Email* (3) | hansha.sharma@hpe.com

Token® (3)

FIGURE 18. Individual Source Control Configuration

Reference Architecture

-Access the Kubernetes Training screen, and then onboard the necessary training applications.

Create Training

Page 26

Cluster Detail

Name® (7

Description (7

miltraining

RunTime Image* (7

ML Training Toolkit, with GPU support

1

Enable DataTap 3) [_]

— Node Roles a
— LoadBalancer
Instances (7} | q
ot
CPUG) | 5 “
Memory (GBY (7} | 5 m
GPU®) |1 m
— RESTServer
Instances (7} | q E
CPUT | 5 “
Memary (GBY (7} | g E
GPU®) |1 m
— controller
Instances (70 4
ot
CPUG) | 5 m
Memary (GBY () | g “
GPUT) | 1 u
Edit/Launch yamil

FIGURE 19. Training Cluster Creation

Reference Architecture

Page 27
-Access the Kubernetes Notebooks screen, and then launch the notebook application. Also, attach the fraining cluster.
Create Notebook
Cluster Detail
Mame* (7 | g
Description ()
RunTime Image* (3) | jupyter Notebook with ML toolkits -

Enable DataTap (3]

— Mode Roles

— controller

|
1=

Instances (7 | q

CPUD | 2

Memory (GBI () | g

GRUD | 1

Persistent Storage Size (GB) (7)

Persistent Storage Class (7)

Associate with Training (7

-
Envircnments

Edit/Launch yami

w2 | mitraining

FIGURE 20. Notebook Cluster Creation

-Once the notebook status appears as configured, it is possible fo view the notebook applications and access the application endpoints.
-SelecT the Jupyterlab endpoint from the Notebook Endpoints tab.

Notebooks

Applications Notebook Endpoints

Kubernetes Service Name Role

nb-controller-prajm-0 controller

FIGURE 21. Accessing Jupyterlab

Details KubeDirector Cluster Services Ports Access Points Service Type
KubeDirectorApp: b SSH 2
1D: jupyter-notebook

Jupyte Notebook w00
Name: Jupyter Notebook with ML toolkits

NodePort

Reference Architecture

-Log into Jupyterlab using AD/LDAP credentials, and then launch a Python 3 notebook.

Warning: JupyterHub seems to be served
over an unsecured HTTP connection. We
strongly recommend enabling HTTPS for
JupyterHub.

Username:

imageanalyst

Password:

FIGURE 22. Sign in to Jupyterlab

Page 28

-EnTer the ‘%kubeRefresh’ magic in the Python cell and provide the logged-in member’s password when prompted. Kubectl commands can

now be entered from the notebook.

[6]: %kubeRefresh

kubeconfig set for user imageanalyst

-Training dataset to prepare the model. See the HPE Ezmeral Container Platform 5.3 documentation for Notebook Magic Functions.

#%%mlteaining
peint(”Impocting libracies”)
import pandas as pd

impoct numpy as np

from scipy import stats
import math

import os

import datetime

import xgboost as xgb
import pickle

import matplotlib.pyplot as plt

Stact time
peint(”Stact time:

”

, datetime.datetime.now(])

Project repo path function

def ProjectRepo(path):
ProjectRepo = ”/bd-fs-mnt/project_cepo”
cetuen sto(ProjectRepo + °/7 + path)

pcint(”Reading in data”)

Reading in dataset table

dbName = ”pgyellowtaxi”

df - pd.cead_csv(ProjectRepo(’/data/demodata.csv’]))

Reading in latitude/longitude coocdinate lookup table

—

http://docs.bluedata.com/52_k8s-kubernetes-notebook-magic-functions

Reference Architecture Page 29

lookupDbName = ”pglookup”
dflook = pd.cead_csv(ProjectRepo(’/data/lookup-ipyheadec.csv’]]
pcint(”Done ceading in data”)

mecging dataset and lookup tables on latitudes/coocdinates

df - pd.mecge(df, dflook[[lookupDbName + ’.location_i’, lookupDbName + ’.long’, lookupDbName + ’.lat’]],
how="left’, left_on-dbName + ’.pulocationid’, cight_on-1lookupDbName + ’.location_i’)

df.cename(columns = {(lookupDbName + ’.long’):(dbName + ’.stactstationlongitude’]}, inplace = Tcue]
df.cename(columns = {(lookupDbName + ’.lat’]):(dbName + ’.stactstationlatitude’)}, inplace = True)

df - pd.mecge(df, dflook[[lookupDbName + ’.location_i’, lookupDbName + ’.long’, lookupDbNeme + °.lat’]],
how="left’, left_on-dbName + ’.dolocationid’, cight_on-lookupDbName + ’.location_i’)

df.cename(columns = {(lookupDbName + ’.long’]:(dbName + ’.endstationlongitude’]}}, inplace = True)
df.cename(columns = {(lookupDbName + ’.lat’]:(dbName + ’.endstationlatitude’])}, inplace = True]

def fullName(colName]:
retuen dbName + °.° + colName

convert string to datetime

df [fullName(tpep_pickup_datetime’)] = pd.to_datetime(df[fullName(’tpep_pickup_datetime’]])
df [fullName(tpep_dropoff_datetime’])] = pd.to_datetime(df[fullName(’ tpep_dcopoff_datetime’)])
df [fullName(’ducation’)] = (df[fullName(”tpep_dropoff_datetime”]] -

df [fullName(”tpep_pickup_datetime”)]].dt.total_seconds(]

featuce engineering

df [fullName(”weekday”]] = (df[fullName(’tpep_pickup_datetime’]].dt.dayofweek < 5).astype(float)

df [fullName(”houc”)] = df[fullName(tpep_pickup_datetime’)].dt.hour

df[fullName(”wock”)] = (df[fullName(’ weekday’)] == 1) & (df[fullName(”houc”)] >= 8) & (df[fullName(”houc”]] < 18]
df [fullName(”month”)] = df[fullName(’tpep_pickup_datetime’]].dt.month

convect month to a categorical feature using one-hot encoding

df - pd.get_dummies(df, columns=[fullName(”month”])])

Filter dataset to rides under & hours and under 150 miles to cemove outliers

df = df[df[fullName(ducation’])] > 20]

df = df[df[fullName(’ducation’])] < 10800]

df = df[df[fullName(’trip_distance’]] > 0]
df = df[df[fullName(’teip_distance’]] < 150]

deop null cows
df = df.dropna(how="any’,axis=0)

select columns to be used as featuces

cols = [fullName(’wock’]), fullName(’stactstationlatitude’), fullName(’stactstationlongitude’],
fullName(’endstationlatitude’], fullName(’endstationlongitude’]), fullName(’tcip_distance’), fullName[’ weekday’],
fullName(’ hour’]]

cols.extend([fullName(’month_’ + ste(x]) foro x in cange(l, 7))

cols.append(fullName(’ducation’])

dataset = df[cols]

:(len{cols]) - 1)].values

= dataset.iloc[:, O0:f
(len(cols) - 1]].values

X
y = dataset.iloc|:,
X = X.copy(]

y = y.copy(]

del dataset

del df

pcint(”Done cleaning data”)

E—

Reference Architecture Page 30

peint(”Training...”)

from sklearn.model_selection import train_test_split
X_teain, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

from skleacn.preprocessing impoct StandacdScalec
sc = StandacdScaler()

X_train = sc.fit_transfoem(X_train)

X_test = sc.transform(X_test)

xgbe = xgb.XGBRegressor(objective =’ceg:squacedeccor’, colsample_bytree = 1, subsample = 1, leacning_rate = 0.15,
booster - ”gbtree”, max_depth = 15, eta = 0.5, eval_metcic = “cmse”, tree_method="gpu_hist’, gpu_id-0]

pcint(”num teain elements: ” + steo(len(X-train)])

pcint(”Teain stact time: ”, datetime.datetime.now(])

xgbe.fit(X_teain, y_train)

pcint(”Train end time: ”, datetime.datetime.now())

y_pred = xgbr.predict(X_test]

y_pred = y_pred.clip(min=0)

from skleacn impoct metrics
from skleacn.meteics impoct mean_squaced_log_eccor

pcint(’Mean Absolute Ecroc:’, metrics.mean_absolute_eccoc(y_test, y_pred)]

peint(’Mean Squared Eccor:’, metrics.mean_squaced_eccoc(y_test, y_pred))

peint(’Root Mean Squaced Eccor:’, np.sqget(metrics.mean_squaced_eccor(y_test, y_pred)))
pcint(’Root Mean Squaced Log Eccoc:’, np.sqet(mean_squaced_log_eccoc(y_test, y_pred]])
peint(]

pcint(”Saving model”)
pickle.dump(xgbc, open(PrcojectRepo(’models/’] + ”XGB.pickle.dat”, "wb”])

from xgboost impoct plot_impoctance
plot_impoctance(xgbe, max_num_features=10] # top 10 most impoctant featuces
plt.show()

Finish time
pcint(”End time:

1]

, datetime.datetime.now(])

The output looks like this:

Importing libraries

Start time: 2021-88-24 16:58:31.977260
Reading in data

Done reading in data

Done cleaning data

Training...

num train elements: 264325

Train start time: 2021-88-24 16:50:35.330399
Train end time: 2021-08-24 16:51:22.312730@
Mean Absolute Error: 179.24821523937294

Mean Squared Error: 83067.86138576@36

Root Mean Squared Error: 288.21356891333267
Root Mean Squared Log Error: ©8.3093430779701812

Saving model
End time: 2021-88-24 16:51:308.0838840

-Access the Model Management screen, and then click the Register New Model button to open the Register New Model screen.

—

Reference Architecture Page 31

-RegisTer the serialized model, being sure fo include the Model Version and Path to Model Repo.

Register Model

Label

Name" (D) | ezm lops-nyctaxi

Description (7)

Model Store Type (3) | Ezmeral Project Repository

Model Version* (3) | 11

v
Path to Model Repo” () | repo://project_repo/models/XGB.pickle.dat

Path to Scoring Script (2) repo://project_repo/models/XGB_Scoring.py Browse

Trained on Environment (3)

FIGURE 23. Registering Model

Reference Architecture Page 32

-Access the Kubernetes Model Serving screen and then onboard the necessary training applications.

Create Model Serving

Cluster Detail

Mame™ () nyctaxi

Description (2

Model Serving Engine™ (7] ML Inferencing -
- oy
Select Mod=l™ 1) ezmlops-myctaxi vl.1 -

Enzhble DataTap () D

— Mode Roles =
~ LoadBalancer
Instances (71 1 ..ﬁq"l
L
CPU | 5 E
Memary (GB) (71 | & E
GPU T | g E
™ RESTServer
Instances (71 | 1 g
g
CPU | 5 E
Memaory (GB} (T} | 4 E
GPUT | g E
e

FIGURE 24. Launching Deployment Cluster

Reference Architecture

Now use the deployed model. To make predictions:

-CreaTe a Postman API call that is formulated as follows:

a. Prefix: Either http:// or https://, as appropriate.

b. Body: The access point from the ModelServinglLoadbalancer of the Load Balancer role in the Ezmeral Serving Endpoints tab.

Model Serving

Applications Ezmeral Serving Endpoints MLflow Seldon Endpoints

Kubernetes Service Name Role Details KubeDirector Cluster
nyctaxi-loadbalancer-mcovk-0 LoadBalancer KubeDirectorApp: nyctaxi

D: deployment-engine

Name: ML Inferencing

nyctaxi-restserver-nvxpn-0 RESTServer KubeDirectorApp: nyctaxi
ID: deployment-engine
Name: ML Inferencing

FIGURE 25. Deployment Endpoints

c. Suffix: Registered model name and version number, in the format/model_name_registered/version_number.

Model Management

O Model Name Model Version Description Model Stare Type.

O lezmiops-nyctaxi 11 Ezmeral Project Repository

FIGURE 26 Model Management

d. Ending: /predict.

-Verify that the finished API call looks similar to the example below:

Services

Model serving request balancer stats

AP Server
Model Serving LoadBalancer
Model Serving Path

SsH

AP Server

Model Serving Path

Details

Ports

8081

10001
32700

10001

Access Points
ezam-OLperflabhp.com:10020

ezam-OL perflabhp.com:1002:

ezam-0L perflabhp.com:10027 2
/<<model_name>>/<<model_version> > /predict
ezam-OL perflabhp.com:10021

ezam-OL perflabhp.com:10026 [Auth Toke

/<<model_name>>/<<model_version> >/predict

Created At: Tue Aug 24 2021 13:24:16

Created By: imageadmin

Model: repo//project. repo/models/XGEpickle dat

Scoring Script: repo://project_repo/models/XGB_Scoring.py
Tenant Namespace: mitenant

m24wn02.bluedata:10038/ezmlops-nyctaxi/1.1/predict

-In the Deployment Endpoints tab, click the Copy Auth Token link for the Load Balancer role.

Model Serving

Applications Ezmeral Serving Endpoints MLflow Seldon Endpoints

Kubernefes Service Name Role Details KubeDirector Cluster

nyctaxi-loadbalancer-mcovk-0 LoadBalancer KubeDirectorApp: nyctaxi
ID: deployment-engine
Name: ML Inferencing

nyctaxi-restserver-nvxpn-0 RESTServer KubeDirectorApp: nyctaxi
ID: deployment-engine
Name: ML Inferencing

FIGURE 27. Auth Token

-Launch Postman, and then enter the following information:
a. Request URL: The URL created in Step 2.
b. X-AUTH-TOKEN: Auth token copied in Step 3.

-Use the raw body data to send queries.

{
“use_scoring”: true,
”scoring-args”: {
“wock”: 0,
“stact_latitude”: 40.57689727,
“stact_longitude”: -73.99047356,

—

Services

Model serving request balancer stats
APl Server

Model Serving LoadBalancer

Model Serving Path

SSH

APl Server

Model Serving Path

Ports

8081

10001
32700

10001

Access Points

ezam-OLperflabhp.com:10020
ezam-OLperflabhp.com:10025 | Auth Toke:
ezam-OL perflab.hp.com:10027 [Auth Token
1<<model_name>>/<<maodel version>>/predict
ezam-OLperflabhp.com:10021
ezam-OLperflabhp.com:10026 [Auth Token

J<<model_name>>/<<model_version> > predict

Page 33

Service Type

NodePort

NodePort

Register New Model

Actions

7|

Service Type

NodePort

NodePort

Reference Architecture

“end_latitude”: 40.72058154,
“end_longitude”: -73.99740673,
“distance”: 8,

“weekday”: 1,

“hour”: 9,
“month_1”: 0,
“month_2”: 1,
“month_3”: 0,
“month_4”: 0
“month_5": 0
“month_6”: 0

}

.Click Send fo get a prediction.

POST » hitp//ezam-01.perflab hp.com:10027/ezmlops-nyctaxi/1. 1 ipredict

aram Headers (9) Bady® PrerequestScript Tests Sertings
Headers
KEY VALUE
X-Auth-Token 0c35(3af9c5be243a75027 78
Body Cookies Headers (4) TestResults
Pretty Raw Preview Visualize JSON =
2 8, ''start_latitude'': 4057680727, ''start_longitude'': -73.99847356, '‘end_latitude’': 48.72658154, ''end_longitude®':
‘month_a'': @, '‘month 5°': @, '‘month_6"" %
xi-loadbalancer-96c1t-@. nyctaxinsapl.mltenant . svc.cluster. local 16001/ logs/2",
er-96¢1t-8. nyctaxin enant . sve. cluster, local”,
outp 8:58:27] WARNING: ../src/pbm/ghtree.cc:3sa: Loading from a raw memory buffer on CPU only machine. Changing tree method to
1\nThe ride duration prediction is 2899,4675 seconds.\n\n\n",
pid
“qid
B "request_u + "http://nyctaxi-loadbalancer -96¢ 1t-0. nyctaxinSpl . mltenant . svc. cluster. local 110001/ /history/2",
"status": "Finished"
POST v hupi/tezam-01.perflab.hp.com:10027/ezmlops-nyctaxi/1.1/predict
Params Authorization Headers (9) Body® Pre-request Script fests Settings
none form-data xwww-form-urlencoded @ raw binary GraphQL N v
18

Body Cookies Headers (4} Test Results
Pretty Raw Visualize SON = =
z , **start_latitude’: , "*start_longitude’ ' *tend_latitude’*:

7399047356, 40.72058154,
4" e,
yctaxi -loadbalancer-96¢ 1
alancer-96c1t-9.nyct

" "manth

axinsapl. mlt
9pl.mltenant . sve.cl
Jsrc/ghm/ghtree. cc:350: L

luster.local:10001/logs/2",

local”,

ing from a raw memory buffer on cPU only machine.
ion is 2899.467% seconds.\n\n\n",

de duration predi

FIGURE 28. Taxi Ride Prediction

**end_longitude' ":

73,90740673,

hist.\n[18:58:27]

-73.99740673,

Changing tree method to hist.\n[18:58:27] WARNING:

WARNING !

DESCRIPTION

distance'': 8,

‘weekday' *: 1,

../src/learner.cc1222: Mo visible GPu

“distance'': 8, '‘weekday'": 1, ''hour'': 9,

“hour' s @,

Page 34

m i :

month_1'"

Save Response ¥
wmQ
1@, “'month_2'': 1,

is found, setting “gpu_id" to

m s °

*month_17":

See the HPE Ezmeral Container Platform 5.3 documentation for Getting started with Al and ML in Kubernetes for more deftails.

Use case on Pima Indian's diabetes prediction

e, ""month_2"7: 1,

..fsrcflearner.cci222: Mo visible GPU is found, setting “gpu_id” to

This section explains model building, model registry, and model serving for Diabetes prediction using end-to-end ML Ops components on HPE

Ezmeral Runtime

» Dataset: https://www.kaggle.com/uciml/pima-indians-diabetes-database

« Attempting to classify whether or not a patient has diabetes based on some diagnostic measurements

« All patients in the dataset are females at least 21 years old of Pima Indian heritage

—

https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html
https://www.kaggle.com/uciml/pima-indians-diabetes-database

Reference Architecture

Follow the below step-by-step procedure to implement the use case on HPE Ezmeral Runtime.

-CreaTe an ML Ops tenant.

O mlop02 ML ops 2 ml02

FIGURE 29. ML Ops Tenant

-CreaTe a training cluster inside the ML Ops tenant.

"1 HPE Ezmeral Container Platform

Dashboard Training

Users . .
Applications Training Endpoints

Project R itory

Source Control

Model Registry

Training ML Training Toolkit, wit...

More info >

#/Launch

Model Serving

DataTaps 1
FsMounts 1
Applications Running Applications
Notebooks
O Name Description Serving Framework Created At
0O o1 Kubedirector Thu Dec 02 2021 01:18:30

FIGURE 30. Training Cluster

Mamespace: mlop02

Cores: 100

Memory: No Quota
Ephemeral Storage: No Quota
GPU Devices: No Quota
Persistent Storage: No Quota
ML Ops Project: True

Role Configurations

LoadBalancer (1)
RESTServer (1)

controller (1)

Status

@ configured

Member Status

Page 35

Do
A
=]

(Acting as Tenant Admin) (>
mlop02 | admin -

Create Training

Actions

i)

Reference Architecture Page 36

-CreaTe a notebook and attach a training cluster to it.

. (Acting as Tenant Admir

[HPE Ezmeral Container Platform mbf,o“admin ~
Dashboard Notebooks
Users .

Applications Notebook Endpoints
Project Repository
Source Control

. *
Model Registry Jupyter
- 0)

Training Jupyter Netebook with ...
Model Serving Moreinfo >
DataTaps 1
FsMounts 1
Applications Running Applications
Notebooks

O nName Description Serving Framework Created At Role Configurations Status Member Status Actions

O nbO1 Kubedirector Thu Dec 02 2021 01:47:59 controller (1) @ configured]

FIGURE 31. Creating notebook

-Upload dataset to project Repository at project_repo/data/pima_Indians/ and scoring script at
project_repo/code/Tensorflow/Diabetes_Scoring.py (can be found in the notebook default examples directory at
examples/tensorflow/diabetes_prediction/ Diabetes_Scoring.py).

Also, create a new directory “Diabetes_Prediction” under project_repo/models.

The project_repo structure is as shown below.

/bd-fs-mnt/project_repo/

=
[F13 code
[=] (0 Tensorflow
[Diabetes_Scoring.py
=12 models

[T Diabetes_Prediction

=1 data
[<] (0 Pima_lndians

[pima-indians-diabetes.csv

FIGURE 32. Project repo

https://www.kaggle.com/uciml/pima-indians-diabetes-database

Reference Architecture Page

-Login fo notebook and open the training cluster notebook at /examples/tensorflow/diabetes_prediction/Diabetes_Prediction-k8s.ipynb.

: File Edit View FRun Kernel Git Tabs Settings Help

B + ¢ o

a
B / examples / tensorilow /
0 Name - Last Modified
B dizbetes_prediction 13 days ago
W] tensorflow_sutoencoderipynb 2 months ago

o

FIGURE 33. Training Cluster notebook

-SeTTing up the environment and Data Preprocessing.

impoct numpy

imporct os

impoct pandas as pd
impoct tensocflow as tf

Set the project repo
def ProjectRepo(path]:

ProjectRepo = ’/bd-fs-mnt/project_cepo/’#o0s.popen(’bdvcli --get cluster.pcoject_cepo’).cead().csteip()
peint(ProjectRepo)

cetucn ProjectRepo + ’/’ + path
peint(ProjectRepo(’data/Pima_Indians/pima-indians-diabetes.csv’])
Load the dataset
dataset = pd.cead_csv(ProjectRepo(’data/Pima_Indians/pima-indians-diabetes.csv’], delimiterc=",”)
dataset.columns = [

“NumTimesPeg”, ”P1GlcConc”, ”BloodP”,

”SkinThick”, ”TwoHoucSerIns™, ”BMI”,

”DiPedFunc”, ”Age”, “HasDiabetes”]

Reference Architecture Page 38

-Visualizing correlation of variables with a heatmap and plofting histogram.

%matplotlib inline

impoct seabocn as sns

sns.heatmap(coce, annot = True)

impoct matplotlib.pyplot as plt
dataset.hist(bins=50, figsize=(20, 15])

plt.show()
. e 1): import matplotlib.pyplot as plt
[3]: | Bmetplotlib inline doteset.hizt(bins=50, figsize=(22, 13))
import seaborn as sns plt.shan(})
sns.heatmap(corr, annot = True) NumTimesPrg 5 FGlcCone BloodP.
o
<matplotlib.axes._subplots.AxesSubplot at @x7ff@242foedd> m =
10 100
NumTimesPrg - - M
PiGkCanc JB |08 © .
BloodP -SENES “
0E B
sinThick o I I il
1 1
TwcHourSerins - 0a do 25 S0 75 o uws mo 1 "% % s w0 b s 15 e
Bl
SinThick TwoHourSerins
DiPedFunc 0z
- =0
Age 200
oo
HasDiabetes | it o
g ¥ & ¥ B T ¢ & B
5 8 8B & 5§ = &g T § 50
i 2 E & 5 &
£ 8 ® 5 %5 2 2 . 10
£ = £ a] |'|| ,n
S [k4
= = ol 0
B @ B o 100 20 n o a0

Model development (Part 1)
-ATTempTing the first model with XGB.

First XGBoost model for Pima Indians dataset

from numpy impoct loadtxt

from xgboost impoct XGBClassifiec

from sklearn.model_selection import train_test_split
from skleacn.metrics imporct accuracy_scoce

impoct pickle

load data
dataset = loadtxt(ProjectRepo(’data/Pima_Indians/pima-indians-diabetes.csv’), delimitec=",”,skiprows=1)

split data into X and y
X_train = dataset[:,0:8]
y_train = dataset[:,8]

£it model no training data
model = XGBClassifier()
model.fit(X_train, y_train)

#
pcint(model.get_xgb_pacams(])

[18:82:23] WA :1861: Starting in XGBoost 1.3.8, the default evaluation metric used with the cbjective 'binary:logistic’ was changed from ‘error’
to "logloss'.

{"objective’:

../src/learner.
c if you'd like to restore the old behavior.

: 8.5, 'booster': "gbtree’, ‘colsample_bylevel®: 1, ‘colsample_bynode': 1, “colsample_bytree’: 1, "gamma’: @,
strain **, "learning_rot 2.300000012, 'mox_delto_step': @, 'mox_depth': 6, ‘min_child weight': 1, 'monotone_const
e': 1, "random_state': @; 'reg_alpha': @; 'reg_lambda': 1, 'scale_pos_weight': 1, "subsample®: 1, "tree_method": 'exact'; 'validate paramsters’

set eval_me

id*: -1,
64, "nu
“verbo

logistic', ‘'base_score

m_parallel

sity': None}

Hattachments
Training Clus ML Engine
tclal python

Model development (Part 2)
-The second model uses Keras with a remote training cluster.

a. Save model and prepare for TensorFlow Serving

—

Reference Architecture Page 39

%%tcl01

impoct numpy

impoct os

impoct pandas as pd

import tensorflow as tf

from numpy impoct loadtxt

from keras.models import Sequential
from keras.layers import Dense

with tf.device(”/device:CPU:0”]):

Set the project rcepo

def ProjectRepo(path):
ProjectRepo = ’'/bd-fs-mnt/project_cepo/ #o0s.popen(’bdvcli --get cluster.project_cepo’).cead().csteip()
peint(ProojectRepo)
cetucn ProjectRepo + /7 + path

Load the dataset
pcint(”Loading data™)
dataset = loadtxt(ProjectRepo(’data/Pima_Indians/pima-indians-diabetes.csv’], delimiter=",”,skiprows=1]
dataset.shape

Split into input ([X) and output (y) variables
X = dataset[:,0:8]
y = dataset[:,8]

Define the keras model
peint(”Building model”)
model = Sequential()
model.add(Dense(12, input_dim=8, activation="relu’])
model.add(Dense(8, activation="relu’])
model.add(Dense(l, activation=’sigmoid’)]

Compile the keras model
model.compile(loss="binacy_crossentcopy’, optimizecr=’adam’, metrics=[’accuracy’]]

Fit the keras model on the dataset
peint(”Teaining model”)
model.fit(X, y, epochs=150, batch_size=10, verbose= 0]

Evaluate the keras model
_, accuracy = model.evaluate(X, y, verbose=0)

0

peint(’Accuracy: %.2f° % (accuracy*100])

Make class predictions with the model
predictions = model.predict_classes(X]

Summarize the first 3 cases
for 1 in range(3):
peint(’%s => %d (expected %d)’ % (X[i].tolist(], predictions[i], y[i]])

Save model weights and acchitecturce together
peint(”Saving model”)
model.save(ProjectRepo(’models/Diabetes_Prediction/db_cemote.hb’)]

Evaluate the keras model
_, accuracy = model.evaluate(X, y, vecbose=0]g

0

peint(’Accuracy: %.2f° % (accuracy*100])

Make class predictions with the model

E—

Reference Architecture Page 40

| # Summorize model.
maodel.summary()
print("Done"}

History URL: http://tcl@l-restserver-c6fgl-8.tcl@lms2q8.mlopd2.svc.cluster. local: 18081 fhistory/4

.See the logs and Job Status as Finished.

[24]: |!1up --url http:/fteldl-restserver-c6fgl-2.tcldlms2q9.mlop@2.sve.cluster.local: 18881 /history/4

Job Status: Finished

Loading data

/bd-fs-mnt/project_repo/

Building model

Training model

Accuracy: 75.52

[6.8, 148.@, 72.8, 35.8, @.8, 33.6, 8.627, 50.8] => 1 (expected 1)
[1.8, 85.8, 65.8, 29.8, 8.8, 26.6, ©.351, 31.8] =» @ (expected @)
[6.8, 183.9, 64.0, ©.8, ©.8, 23.3, 0.672, 32.8] =» 1 (expected 1)
Saving model

/bd-fs-mnt/project_repa/

Accuracy: 75.52

[6.0, 148.0, 72.0, 35.8, 9.0, 3.6, ©.627, 50.0] => 1 (expected 1)
[1.8, 85.8, 66.8, 29.8, @.8, 26.6, ©.351, 31.8] =» @ (expected @)
[8.0, 183.0, &4.0, 0.0, 0.8, 23.3, 0.672, 32.8] =» 1 (expected 1}
[1.8, 89.0, 66.8, 23.0, 94.8, 28.1, ©.167, 21.8] => @ (expected @)
[@.e, 137.8, 4B.0, 35.8, 168.8, 43.1, 2.288, 33.8] =» 1 (expected 1)
Preparing for TF Serving

fbd-fs-mnt/project_repos

[bd-fs-mnt/project_repo/

Model: "seguential 1"

Layer (type) Output Shape Param #
dense_1 {Dense) (None, 12) 108
dense_2 (Dense) (None, 8) 104
dense_3 (Dense) {None, 1) 9

Total params: 221
Trainable params: 221
Mon-trainable params: @

Done

FIGURE 34. Job Status Logs

—

Reference Architecture

-For the model registry, go to tenant Ul and register the model.

Register Model

Label
Mame™ ()

Description ()

diabetesmodel

Model Store Type (7)
Madel Version® (7)

Path to Model Repo® (7)
Path fo Scoring Script ()

Trained on Environment (7)

FIGURE 35. Model Registry

Ezmeral Project Repository

1.0
Jproject_repo/models/Diabetes_Prediction/db_remaote.hs

JIproject_repofcode/Tensorflow/Diabetes_Scoring.py

Browse

Browse

Page 41

Reference Architecture

-CreaTe Model Serving.

Create Model Serving

Cluster Detail

&

Name® (7) | diabetermodell

Description (7)

Model Serving Engine® (7)

\2) ‘ ML Inferencing
Select Model* () ‘ diabetesmodel v1.0 v ‘
Enable DataTap (7) D
(]

~ Node Roles

— LoadBalancer

Instances (7)1

cPUD)

(o]

Memory (GB) (3) | 4

GPU®) | g

 RESTServer
Instances (7) | 1

cPUD) | 5

Memory (GB) (3) | 4

GPU®) | g

Edit/Launch yaml

FIGURE 36. Creating Model Serving

I TEEE IEME

Submit

Page 42

Reference Architecture Page 43

-Once Model Serving is done, obtain the endpoint and Auth foken from the Model Serving section.

Model Serving

Applications Ezmeral Serving Endpoints MLflow Seldon Endpoints

Kubernetes Service Name Role Details KubeDirector Cluster Services Ports Access Points Service Type
diabetermodel1-loadbalancer-lkéhf-0 LoadBalancer KubeDirectorApp: diabetermodel1 Model serving NodePort
ID: deployment-engine request balancer 8081 m24wn02.bluedata:10048
Name: ML Inferencing stafs
API Server 10001 Auth Token

Model Serving

LoadBalancer 32700 m24wn02.bluedata:10051 |auth Token
Model Serving Path J<<model_name=>/<<madel_version>>/predict
diabetermodel1-restserver-5xqom-0 RESTServer KubeDirectorApp: diabetermodel1 SSH 22 m24&wn02.bluedata:10047 NodePort
ID: deployment-engine AP Server 10001 m24wn02bluedsts: 10049 auth Token
Name: ML Inferencing Model Serving Path /<=<model_name>>/<<model_version>>/predict

FIGURE 37. Model Serving

-Predicﬂon can be done by making a POST request via curl or postman to the Model Serving endpoint.

cucl -X POST -H ”Content-Type:application/json” -H ”X-Auth-Token:<Auth Token>” -d ’{”use_scocing”: tcrue,
”scoring_args”: {”NumPreg”:1.0, ”Glucose”: 85.0, ”BloodPressuce”: 66.0, ”SkinThick”: 29.0, ”Insulin”: 0.0, ”BMI”:
26.6, ”DiabetesPedFunc”: 0.351, ”Age”: 35.0} }’ http://<model-secving-
Loadbalancec:poct>/<modelname>/<version>/predict

For example : cucl -X POST -H “Content-Type:application/json” -H ”X-Auth-Token:fb3£6521015978c2£5d58530a42ce720”
-d ’{’use_scoring”: true, ”"scocing-arcgs”: {’NumPreg”:1.0, ”“Glucose”: 85.0, ”BloodPrcessuce”: 66.0, ”SkinThick”:
29.0, ”Insulin”: 0.0, ”BMI”: 26.6, “DiabetesPedFunc”: 0.351, ”Age”: 35.0} }’
http://m24wn02.bluedata:10050/diabetesmodel/1.0/predict

[root@m24wn13 ~]# curl -X POST -H "Content-Type:application/json" -H "X-Auth-Token:fb3f6521015978c2f5d58530a42ce720" -d '{"use_scoring": true, "scoring
": {"NumPreg”:1.0, "Glucose": 85.0, "BloodPressure": 66.0, "SkinThick": 29.0, "Insulin": 0.0, "BMI": 26.6, "DiabetesPedFunc": 0.351, "Age": 35.0}

' http://m24wn02.bluedata: 10050/diabetesmodel/1.0/predict

{"tnput":"{' 'NumPreg'': 1.0, ''Glucose'': 85.0, ''BloodPressure'': 66.0, '‘SkinThick'': 29.0, ''Insulin'': 0.0, ''BMI'': 26.6, ''DiabetesPedFunc'': 0.3

51, "'Age'': 35.0}","log_url":"http://diabetermodell-loadbalancer-1k6hf-0.diabetermodel14g65t.mlop02.svc.cluster.local:10001/1ogs/15","node":"diabeterm
odell-loadbalancer-1k6hf-0.diabetermodel14g65t.mlop02.svc.cluster.local”,"output”:"Chances of having diabetes: @%\n\n","pid":"990","qid":"15","request_
url”;"http://diabetermodell-loadbalancer-1k6hf-0.diabetermodel14g65t.mlop02.svc.cluster.local:10001/history/15", "status":"Finished"}

-This concludes our testing for ML Ops using the Training cluster and KubeDirector Notebook.

EZMERAL ML OPS - IN ACTION WITH USE CASE (SPARK OPERATOR)

Spark operator with K8s

Spark is the cluster computing framework for big data processing. It can also be used for distributed data processing on different machines. It can
be used for batch, stream, and interactive data processing. Various file systems can be loaded in Spark. The Spark APl is available in Scala,
Python, Java, and R. Spark provides libraries such as Spark SQL (for structured data processing), MLlib (for scalable and easy ML), GraphX (for
iterative graph computation within a single system), and Spark Streaming (to process real-time data from various sources).

http://m24wn02.bluedata:10050/diabetesmodel/1.0/predict

Reference Architecture

Page 44

The Kubernetes Operator for Apache Spark included in the HPE Ezmeral Runtime makes running Spark jobs easy. The Spark operator is a

custom Kubernetes resource that is configured in a tenant namespace to allow on-demand cluster deployment with Spark Executor pods. For

managing Spark jobs, it uses declarative specifications. It dynamically creates the specified number of driver and executor pods during the

execution and then deletes the executor pods and leaves the driver pod in the completed state when the job finishes successfully. The driver pod

does not consume any Kubernetes resources in this state, and the logs can be viewed to see execution details or results.

Kubernetes Cluster

it
Apphcation |
.
kubectl/ e
m*ﬂﬁ P i L]

spark-wordeount.yaml

Submission |
Runner

Admission
Webhook

| Spark Pod _.___d--*"f
Monitor

Mutating

scheduler

FIGURE 38. Spark operator architecture on K8s

Prerequisites
o HPE Ezmeral Runtime

o Platform administrators can access the web interface
¢ Root access to the controller host
System requirements
« For supported Kubernetes versions, see Kubernetes Version Requirements.
e Forissues and workarounds, see Issues and Workarounds.
* The following resources must be available to install Kubeflow: h
* Minimum number of nodes for compute cluster: 2 (1 primary, 1 secondary)
e Minimum core and memory resources required:
- CPU Cores: 36
- Memory (GB): 160

AD/LDAP authentication requirements

o The Kubernetes cluster where Kubeflow will be installed must have AD/LDAP user authentication configured. The AD/LDP user

authentication configuration is posted as a secret in the cluster.

« For information about setting AD/LDP user authentication configuration, see Authenftication, in Creating a New Kubernetes Cluster.

—

https://docs.containerplatform.hpe.com/53/reference/system-requirements/kubernetes/Kubernetes_Version_Requirements.html
https://docs.containerplatform.hpe.com/53/reference/issues-workarounds_53.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/clusters/Creating_a_New_Kubernetes_Cluster.html#v52_k8s-creating-a-new-kubernetes-cluster__step3

Reference Architecture Page 45

Preparing the environment
To prepare the environment:

-I_og in o the web interface as a Kubernetes Administrator.
-CreaTe a Kubernetes cluster, being sure that this cluster meets or exceeds the prerequisites described above.

-Check the ‘Enable Spark Operator.

Edit Kubernetes Cluster

o Host Configurafions 0 Cluster Configurations 0 Authenfication e Application Configurations summary

Select from the list of compute applications

Enable Spark operator (7
Istio (7 D
Enable Kubeflow (7

Enable Airflow (- D

Palicy Settings

FIGURE 39. Application configurations

.This bootstraps a Spark operator and creates the following:
a. Integrated HPE Ezmeral Data Fabric Container Storage Interface (CSI) and associated service accounts.

b. Spark namespaces, service accounts, cluster roles, and role bindings, Spark applications Custom Resource Definition (CRD), Spark
operator, and compute templates for Spark.

c. Auto Ticket Generator Service, roles, and role bindings.
-CreaTe a new Kubernetes tenant. Do not assign any quotas when creafing this tenant. See Figure 13 for tenant creation.
.Assign a Kubernetes Cluster Administrator user to the cluster created in Step 2. See Figure 12 for assigning users to the cluster.
-Assign a Tenant Administrator user to the tenant created in Step 4. See Figure 15 for admin assignment fo the tenant.
-I_og out of the web interface when this process is complete.
-HPE Ezmeral Runtime automatically creates the following:

a. Spark operafor namespace.

b. User secrets for the tenant members (necessary for running the Spark workload with the Spark operator).

c. The Role-Based Access Control (RBAC) for Spark resources is also configured for the AD/LDAP tenant members.
Spark operator use case
Following are the steps to run a Spark job using the Kubernetes Web Terminal as a local user.

-I_og in o the web interface as the Site Administrator, and add/assign Tenant users. See Figure 16 for members assigned to the tenant.

-In the FS Mounts screen, click the TenantShare link in the Name column of the table to open the FS Mount Browser screen. This screen
functions identically to the DataTap browser screen.

—

Reference Architecture Page

-CreaTe the data subdirectory in the TenantShare filesystem mount, and then either create a text file or download this example as
wordcount.fxt.

-Upload the wordcount.txt file to the data subdirectory. In HPE Ezmeral Runtime, the location to this subdirectory is /hcp/tenant-
<tenant_id>/fsmount/data/wordcount.xt.

S/hcp/tenant-14/fsmount/data/wordcount. txt

.Copy the following text, and then save it as spack-wc.yaml.

apiVersion: ”spackoperator.hpe.com/vlbetal”
kind: SpackApplication
metadata:

name: spack-wocdcount-secuce

namespace: mltenant

spec:
#spackConf':
Note: If you are executing the application as a K8 usec that MapR can vecify,
you do not need to specify a spark.mapr.user.secret

#spack.mapr.user.secret: spack-usec-secret
Note: You do not need to specify a spack.eventlog.dic

it will be auto-genecated with the pattecn “mapcfs:///apps/spack/<namespace>”
#spack.eventlog.dic: ”mapcfs:///apps/spack/sampletenant”
type: Java

spackVersion: 2.4.4
mode: cluster
image: gce.io/mape-252711/spack-2.4.4:202009090453C
imagePullPolicy: Always
mainClass: ocrg.apache.spack.examples.JavaWocdCount
mainApplicationFile: “local:///opt/mapc/spack/spack-2.4.4/examples/jacs/spack-examples_2.11-2.4.4.6-mape-
630.jac”

restartPolicy:

type: Never
acguments:
- mapefs:///hep/tenant-14/fsmount/data/wordcount. txt
imagePullSeccrets:
- imagepull
deiver:

cores: 1

cocelimit: 71000m”

memory: “512m”

labels:

version: 2.4.4
Note: You do not need to specify a secviceAccount

it will be auto-genecated cefecencing the pre-existing “hpe-<namespace>”
#secviceAccount: hpe-sampletenant

executor:
cores: 1

cocelimit: ”1000m”
instances: 2
memory: “512m”
labels:

version: 2.4.4

-Use the Kubernetes Web Terminal fo edit spack-wordcount.yaml by updating the namespace and inpuft file name and path for
wordcount.fxt.

-ExecuTe the Spark wordcount job by executing the following command:

S kubectl apply -f /bd-fs-mnt/TenantShare/apps/spack-wocdcount.yaml -n mltenant

E—

46

https://github.com/nivdul/spark-in-practice-scala/blob/master/data/wordcount.txt

Reference Architecture Page 47

kBsuser(ikdss-5zd6r-0

Check the pods running within the fenant namespace by executing the following command:
S kubectl get pods -n mltenant

k8suser(lkdss-5zdér-0: /bd-fs wantShare/ f 3 L1l -t pods —-n mltenant
ontroller—t 9vt j—0 |~:_lJ|'||'|i|'||']

loadbal ancer-mct 0 Running

Running

Running

Running
-Check the job status of the job by executing the following command:

S kubectl logs spark-wordcount-secure-deiver -follow

shutting

-\/alidaTe that the job has been completed by checking the status of the pod:
S kubectl get pods -n mltenant

Model training from KubeDirector Notebook using Spark with Livy
Following are the steps to run a Spark job with Livy operator REST API from KubeDirector Notebook in the Kubernetes by AD/LDAP user.

-Log in to the web interface as the Site Administrator, add/assign Tenant users. See Figure 16 for members assigned to the tenant.
-In the DataTaps screen, click the TenantStorage link in the Name column of the table to open the DataTap Browser screen.

-CreaTe the data subdirectory in the TenantStorage filesystem, and then upload or download it as teain. csv. Refer to this example train.csv.

https://www.kaggle.com/c/titanic/data?select=train.csv

Reference Architecture Page 48

lUpi0ad the traincsv file to the data subdirectory. In HPE Ezmeral Runtime, the location to this subdirectory is /hcp/tenant-<tenant_id>
/data/train.csv.

1 HPE Ezmeral Container Platform

Dashboard Data Source Browser

Users 1 4 T
Project Repository dtap:/Tenant5torage/
Source Control —
=] /|
Model Registry [T data
. HIO sparkml-fitanic4
Training .
. Jfraincsverc
Model Serving (Y traincsy
EICT test, +
DataTaps il eshparque
FsMounts 1
Applications
Notebooks
FIGURE 40. DafaTaps

-Fe‘rch Livy endpoint.

1 HPE Ezmeral Container Platform CActing as Tenant Admin)

miops1|admin

Dashboard Kubernetes Applications
Users 1 X i . X)
KubeDirector ~ Kubectl — Service Endpoints Virtual Endpoints
Project itory
Source Control Kubernetes Service Name Role Details KubeDirector Cluster Services Ports Access Points Service Type
Model Registry livy-http hitp 8998 m24wn02.bluedata10015 NedePort
Training miflow-controller-gfsrm-0 controller KubeDirectorApp miflow SSH 2 m24un02.bluedatarl0026 NodePort
D= miflow MysQL 3306 m24wn0Zbluedatarl0027
Model Serving Name: MLFlow server
Minio s3 bucket 9000 m24wn02.bluedata:10028
DataTaps 1 MLFlow Server 5000 m24wn02.bluedata:10029
FsMounts 1 spark-ui-proxy hitp 80 m24wn02.bluedafa:10014 NodePort
Applications sparkhs-svc http 18480 m24wn02.bluedata:10012 NodePort
sparkts-sve w02 . NodePort
Notebooks hitp 4440 m24wn02.bluedata:10013
spark-thrift 2304 m24wn02.bluedata:10016

FIGURE 41. Service Endpoints

Reference Architecture

-Launch KubeDirector Notebook.

1 HPE Ezmeral Container Platform

Dashboard

Create Notebook

Users 1 Cluster Detail

. . Name* (3)
Project Repository -
Description (7)
Source Control N

sparkfest

RunTime Image™ (7))

Model Registry

| Jupyter Notebook with ML toolkits

Training Enable DataTap (7) D
. — Node Roles |
Model Serving
— controller
DataTaps 1)
P Instances () | 1
FsMounts 1)
cPU® |9 2
: N
Applications)
PP Memory (GB) () | 4
G v,
Notebooks ue o
Percistent Storage Size (GB) (7)) | g
Persistent Storage Class (7 - |
Edit/Launch yaml
FIGURE 42. Creating Notebook
-Access JupyterHub Notebook using the service endpoint.
1 HPE Ezmeral Container Platform
Dashboard Notebooks
Users. 1
Applications Notebook Endpoints
Project itory
Source Control Kubernetes Service Name Role Details KubeDirector Cluster Services Ports Access Points.
Model Registry miftest-controller-rvppf-0 controller KubeDirectorApp: miftest S 27 m2bwn02bluedsts 10017
o 1D: jupyter-notebook Jupyter Notebook 8000 m24wn02.bluedatarl0018
Training Name: Jupyter Notebook with ML toolkits
Model Serving sparktest-controller-hbmv6-0 controller KubeDirectorApp: sparkrest S 22 m24wn02bluedata:10024
1D: jupyter-nafeback Jupyter Notebook 8000 m24wn02.bluedata10025

DataTaps 1
FsMounts 1
Applications
Notebooks

FIGURE 43. Notebook Endpoints

Name: Jupyter Notebook with ML toolkits

Page 49

(Acting as Tenant Admin)
miopsl|admin

Service Type

NodePort

NodePort

Reference Architecture

-Launch PySpark kernel to configure and create Livy session.

Configure the Spark Livy Session Context
Meodify Spark parameters for the sessicn In our examples we are including the DTAP Libraries and we speafy and image that we want tc use for our livy sessions using the spark dluster,
Meconfigure -F

{~ari

i
ri.kubsrnetes . container. image™:"ger. lo/mapr-252711/spark-2.4.7:202186220630P141", "spark.hadecp. F5.dtap. inpl”: "com.blusdata. hadoop . bafs BaFs”, "spark.hadoop.fs.AbstractFileSystem.at

, "executorCores”:2,

‘1 1, ‘executorfores': 1, ‘conf': {'spark.kubernetes.container.image': 'gcr.io/mapr-252711/spark-1.4.7:202186220638P141', ‘spark.hadoop.fs.dtap.impl®:

‘spark.hasoop.fs tractfileSystem.dtap.impl': °com.bluedata.hadoop spark.hadoop.f5. dtap.impl.disable : ‘false’,

/ Jopt /by edata-dtap.jar'

» ‘spark. Jbluedata-dtap.jar', ‘spark.kubernetes.driver.label.hpecp.hpe.com/dtap:

abel.hpecp.hpe.com/dtap’: ‘hadoopl’},

Mo active sessions

Create a Spark Context

Getting a Spark Contesxt can take 3 few seconds 25 the livy containers are started in the background. The Startup Time depends on the speed between the k25 nodes and the image repasitory

¢ print(~hi")

Enter Livy endpoint (e.g., http://<internal-livy-sescion-url>:<port) : https://172.38.226.52:18815

Enter your password: |ssssssss

Create a Spark Context

Page 50

a9, dmpl™:"col

Getting a Spark Context can take a few seconds as the livy containers are started in the background. The Startup Time depends on the speed between the k8s nodes and the image reposito 0y

[2]: |print{=ni")

Spark Session 1D Kind State Spark U1 Driver log User Current session?

6 pyspark e imageadmin o

SparkSession aveilable as "spark'.

hi

-Copy this code to Notebook and execute it to read data from DataTap to Spark Data Frame.

from pyspack.sql imporct SpackSession

from pyspack.sgl.functions impoct isnull, when, count, col

from pyspack.ml.featuce import StringIndexer

from pyspack.ml.featuce import VectocAssembler

from pyspack.ml.classification impoct RandomForestClassifiec

from pyspack.ml.evaluation impoct MulticlassClassificationEvaluator
impoct pandas as pd

import seabocn as sns

impoct matplotlib.pyplot as plt

#spack = SpackSession.builder.appName(”titanic”]).getOcCreate()

read locally

sdf = spack.cead.forcmat(”csv”].option(headec’, ’'true’]).load(”dtap://TenantStorage/data/train.csv”) # data from

https://www.kaggle.com/c/titanic/data

oo cead from mape file system

titanic_sdf = (spack.cead.focmat(”csv”).option(’headec’, ’'true’).load(”mapefs:///exthep/tenant-
5/fsmount/cepo/data/teain.csv”]]

#Converting Spack DataFrame To Pandas Datafame for explocatorcy data analysis
pdf = sdf.toPandas(]

—

Reference Architecture

-Explore Data analysis.

plt.clf()
sns.countplot (x="Survived"”, hue="Sex", data=pdf, palette='winter')

Exploratory data analysis %matplot plt

sns.countplot (x="Survived",data=pdf)
smatplot plt

count
count

survived Survived

-Transform and Train model.

data = sdf.select(col(Sucvived’).cast({’float’], col(’Pclass’].cast(’float’),
col(’Sex’), col(’Age’).cast(float’),
col(’Fare’]).cast(float’), col(Embacked’])

data.select([count{when{isnull(c), c]).alias(c] for ¢ in data.columns]).show()
data = dataset.ceplace(’?’, None).dcopna(how="any’)

data = StringIndexer(
inputCol="Sex’,
outputCol="Gender’,
handlelnvalid="keep’).fit(data).transform(data)
data = StringIndexer(
inputCol="Embarked’,
outputCol="Boarded’,
handlelnvalid="keep’).fit(data).transform(data)

data = data.drop(’Sex’)
data = data.drop(Embarked’)
data.show()

cequiced_featuces = [’Pclass’, ’Age’, ’Face’, ’Gendec’, ’Boacded’]
assembler = VectorAssemblec(inputCols=required_features, outputCol="features’)
transformed_data = assemblec.transform(data)
(training_data, test_data] - transfocmed_data.candomSplit([0.8,0.2])
of = RandomForestClassifier(labelCol="Sucvived’,
featuresCol-"featucres’,
maxDepth=5)
model = of.fit(training_data)

Page 51

Reference Architecture

Fomm————— Fom———— D e e e +
| Survived|Pclass|Sex|Age |Fare | Embarked |
e +o-mmm - R e +

| =] al aeli77] e

Fom—————— Fom———- R e o +
e e e et bt et
|Survived|Pclass| Age| Fare|Gender|Boarded|
e e D et S e
| @.e|] 3.e|22.8] 7.25] e.e| 2.0|
| 1.8] 1.8|38.8|71.2833] 1.8] 1.8]
1.8] 3.8	26.8] 7.925] 1.8 2.8		
1.8] 1.8	35.8] 53.1] 1.8 a.8			
@.2] 3.0	35.9] B.85	e.e a.a		
@.@] 1.8	54.8	51.8625] @.8	a.9
@.@] 3.8 2.8] 21.e75] e.8	2.8			
1.8] 3.8	27.@	11.1333] 1.e] 2.9		
1.8] 2.8	14.9	38.8788	1.8 1.8]	
1.8 3.8] 4.9] 1s6.7] 1.8	a.8			
1.8] 1.8	58.8] 26.55] 1.8 2.8			
@.a] 3.0	28.8] B&.05	@e.g	a.a	
@.2] 3.0	39.9	31.275] e.e	a.a	
[@.@] 3.8	14.8	7.8542] 1.8	a.9
[1.8] 2.8	s55.8] 1s.8] 1.8 2.8			
e.e] 3.8] 2.8] 29.125] @.8	2.8		
e.e] 3.e/31.e] 1s.e] 1.8	2.8			
e.2] 2.8/35.8] 26.8] @©.8	a.9		
1.2] z.8	34.8] 13.8] @e.e	a.a		
1.2 3.8	15.a8	8.8202] 1. 2.2		
e e e e BTt E et

only showing top 28 rows

-Valida're and save model.

pcedictions =

evaluator = MulticlassClassificationEvaluatoc(

accuracy = evaluator.

model.transfocm({test_data)

labelCol="Sucvived’,
predictionCol="prediction’,

metricName="accurcacy’)
evaluate(predictions])

pEAnE ([============" = 1]
peint(’Test Accurcacy = °
pEAnE ([============" = 1]

saving local
model_location

1y

“mapefs:///hcp/tenant-8/dco/data/spackml-titanic4”

, accuracy)

saving on mapr file system

model_location = “mapcfs:///exthcp/tenant-5/fsmount/cepo/models/spackml-titanic”

model.save(model_location]

pcint(”Model Save to location :

{}”.focmat(model_location]))

Page 52

Reference Architecture

Test Accuracy = B.7735182848816326

Saving the Model

saving locally
model_location = "maprfs:///hcp/tenant-8/dco/data/sparkml-titanic4”

saving on mapr File system
model_Llocation = “maprfs://lexthcp/tenant-5/fsmount/repo/model s/ sparkml -titanic”

model . save(model location)

Page 53

print{"Model Save to location :

Model Save to location :

maprfs:

{}".format{model location))

// fhcp/tenant-8/dco/data/sparkml-titanicd

1 HPE Ezmeral Container Platform

Dashboard Data Source Browser
Users T .

Project Repository dtap://TenaniStorage/

Source Control =l

Model Registry O data

Training

Hr sparkml-titanicé

[=]CT treesMetadata

part-00000-58f72907-924d-4370-311a-1240ed2 d0caf-c000.snappy.parquet

Model Serving [part-00003-58f72907-924d-4370-al1a-1240ed2d0caf-c000.snappy.parquet
DataTaps : part-00001-58f72907-924d-4370-3115-1240ed2d0caf-c000.snappy.parquet
[_sUccEss
FsMounts B
.

Applications

Notebooks

FIGURE 44. Data Source Browser

M
L

[P I I N B

part-00002-55f72907-924d-4370-3115-1240ed2d0caf-c000.snappy.parquet
ata

_SUCCESS

part-00003-b43e4fal-67cb-4448-961c-13293957631-c000.5nappy.parquet

part-00001-b43e4fal-67cb-4448-961c-13e293957631-c000.snappy.parquet

part-00002-b43e4fal-67cb-4448-961c-13e293957631-c000.snappy.parquet

part-00000-b43e4fal-67cb-4448-961c-13e293957631-c000.snappy.parquet

[=1 3 metadata

%
%

Y _SUCCEsS

part-00000

Reference Architecture Page 54

EZMERAL ML OPS - EXPERIMENT TRACKING WITH MLFLOW

The use case contains dataset preprocessing, model fraining and evaluation, model tuning via MLflow fracking, and finding the best-trained
model.

Goal: Predict rented_bikes (count per hour) based on weather and time information.

Prerequisite
Dataset: Bike Sharing Dataset

Use case workflow
Following are the steps to implement the use case and run the experiment into the MLflow model server.

-IniTiaIize the web terminal.

-Af'rer login to HPE Ezmeral Container Platform 5.3 and in MLOps Tenant, initialize the web terminal.

: Acting as Tenant Admi
1 HPE Ezmeral Container Platform (Acting as Tenant Admin)

testing | admin

Dashboard Dashboard

Users 3
Download HPE Kubect! Plugin [ll Download Kubect Download Kubeconfig / Copy Secret

Project Repository

Source Control | All Pods (aggregated) - ‘ ‘ Last Hour - ‘

Model Registry Node CPU Usage Percent &) Pod CPU Usage Nanocores () Pod CPU Limit Percent ()
Training

Model Serving “ab.orm

DataTaps 1

FsMounts 1

Applications

Notebooks

11:15 11:30 11:45 12:00 . S e 12:00

Kubeflow Dashboard . .
Node Memory Usage Percent @ Pod Memory Usage in Bytes @ Pod Memory Limit Percent @

E‘ Terminal nof initialized for the user

FIGURE 45. Dashboard

-Crea‘re Secret. Once the web terminal is connected, create a file m1flow-seccet.yaml.

apiVersion: vl
kind: Seccet
type: Opaque
metadata:
name: mlflow-seccet
labels:
kubedirector.hpe.com/seccetType: mlflow
data:
AWS_ACCESS_KEY_ID: YWRtaWs= #admin
AWS _SECRET _ACCESS_KEY: YWRtaWs4xMjM= #adminl23
MLFLOW_ARTIFACT_ROOT: czMBLy9tbGZsb3c= #s3://m1flow

—

http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip

Reference Architecture Page 55

S kubectl create -f mlflow-seccet.yaml -n testing

— @® Connected to terminal Terminate

k8suserikdss-1fp29-0:~5 vi mlflow-secret.yaml

k8suserlikdss-1fp29-0:~5 kubectl create -f mlflow-secret.yaml -n testing
secret/mlflow-secret created

k8suserikdss-1£p29-0:~5 [|

-Launch MLflow Server. Go to the Application Tab and launch MLflow Server.

. (Acting as Tenant Admin) /~
[——1 HPE Ezmeral Container Platform

testing | admin

Dashboard Kubernetes Applications

Users 3
KubeDirector ~ Kubectl Service Endpoints Virtual Endpoints

Project Repository

Source Control

2
Model Registry % - u ' m I I J W L \
Seck) N
Training
Cent0S 8.0 ELK Stack 7.7.1 v1 MLFlow server NVIDIA:TensorFlow(NGC) TensorFlow + Jupyter
Model Serving More info 3> More info More info > More info > More info >
£FLaunch #FLaunch #Maunch ALaunch £Launch
DataTaps 1
FsMounts 1 @
Applications
ubuntu
Notebooks Ubuntu 18.04
More info 3>
Kubeflow Dashboard
AFLaunch
Running Applications
Name Description Serving Framework Created At Role Configurations Stafus Member Status Actions

Sorry, no matching records found

- @ Connected fo ferminal [MELTEE

FIGURE 46. Kubernetes Applications

Reference Architecture Page 56

-We need to aftach the secret created in step 3 in YAML of MLflow Server before launching it.

[——1 HPE Ezmeral Container Platform (Ac:;:%:;r:::;:“\d\"/‘i“) /
Dashboard Create KubeDirector
Users

Edit your Yaml and hit submit fo launch app

Project Repository

apiversion: "kubedirector.hpe.com/vibetal"
Source Control kind: "KubeDirectorCluster”
metadata:

name: “mlflow”

namespace: "testing"”

labels:
Training description: "mlflow-application”
spec:

app: "mlflow"

namingScheme: "CriameRole”

appCatalog: "local”

Model Registry

Model Serving

DataTaps 1
- mlflow-secret

FsMounts 1 roles:

Applications id: “controller”
members: 1
resources:

Notebooks requests:

cpu: "2"
Kubeflow Dashboard memory: "4Gi"
nvidia.com/gpu: "e"
limits:

cpu:
memory: "4Gi"
nvidia.com/gpu: "6"
#Note: "if the application is based on hadoop3 e.g. using StreamCapabilities interface, then change the below dtap lLabel to 'hadoop3’, otherwise for most
#podLabels:
#hpecp . hpe.com/dtap: "hadoop2™

A
vy

s @ Connected fo terminal
FIGURE 47. Create/edit KubeDirector YAML
-Accessing Minio and MLflow Server.

Kubernetes Applications

KubeDirector ~ Kubectl Service Endpoints Virtual Endpoints

Kubernetes Service Name Role Details KubeDirector Cluster Services Ports Access Points Service Type

kf-dashbaard-import-bSntq 20 80 hpecp-531-vm2.rcc.local:10028 NodePort

miflow-controller-jf5mk-0 controller KubeDirectorApp: miflow SSH 22 hpecp-531-vm2.reclocal:10030 NodePort
ID: miflow MySaL 3306 hpecp-531-vm2.reclocal:10031

Name: MLFlow server .
Minio s3 bucket QOOO[hpecp-531-vm2.rcclocal:10032]

MLFlow Server 5000 [h|3ecp—531fvm2.rcc.local:10033]

FIGURE 48. Service Endpoints

Reference Architecture Page 57

-On the MinlO Browser page, create a bucket name m1f1low which is configured in m1flow-seccet.yaml.

AF MinlO Browser

Q Search Objects

Name Size Last Modified

miflow]
FIGURE 49. MinlO Browser
MLflow Server
-Open the MLflow Server window.
ml C Experiments Models GitHub Docs
Experiments + Default
Experiment ID: 0 Artifact Location: s3:/miflow/0
Default 2 1
~ Notes @
None
Search Runs: @ State: Active v Clear
Showing 0 matching runs Delete Download CSV & =| |8 © Columns
O Start Time Run Name User Source Version

FIGURE 50. ML flow Server

E—

Reference Architecture Page 58

-Deploy KubeDirector Notebook. Go to the Notebook Tab and launch Jupyter Notebook.

s Notebooks
Users
Applications Notebook Endpoints
Project Repository
Source Control
Model Registry Jupyter
- o
Training Jupyter Notebook with ...

Model Serving Moreinfo

DataTaps 1
FsMounts 1
Applications Running Applications
Notebooks
Name Descriprion Serving Framework Created AT Role Configurations Status Member Status Actions
Kubeflow Dashboard Sorry, no matching records found

FIGURE 51. Launch Jupyter Notebook

-ATTach ‘clusters” and ‘secret’ in Launch YAML of the Jupyter Notebook.
1 HPE Ezmeral Container Platform (Acting as lenant Aqmin) (..}

testing | admin "/

Dashboard Create Notebook

Users 3
Edit your Yaml and hit submit o launch app

Project Repository L
apiversion: "kubedirector.hpe.com/vibetal®
Source Control kind: "KubeDirectorCluster"
metadata:

name: “notebook”

namespace: "testing’|

Model Registry

labels:
Training description: "notebook”
spec:
. app: "jupyter-notebook"”
Model Serving namingScheme: "CrhameRole"
appCatalog: "local”
DataTaps 1 connections:
clusters:
- mlflow
FsMounts 1 <scratsT
- hpecp-kc-secret-16dcfdes3eadb3ede3c1a1732943158¢
Applications - hpecp-ext-auth-secret
- mlflow-secret
Notebooks roles:
id: "controller"
Kubeflow Dashboard members: 1
resources:
requests:
cpu: "2

memory: "4Gi"

nvidia.com/gpu: "o"

limits

cpu:

memory: "4Gi"

nvidia.com/gpu
hi

based on hadoop3 e.g. using StreamCapabilities interface, then change the below dtap label to 'hadoop3', otherwise for most

Cancel
| @ Connected to terminal 7

FIGURE 52. Edit Launch yaml

In Figure 52, miflow in clusters and mlflow-secret in secrets are attached.

- mlflow is the application name which deployed

- miflow-secret is the secret created

—

Reference Architecture Page 59

-Launching Notebook with MLflow cluster attached from HPE Ezmeral Ul has known issue, so notebook to be created from the terminal. Copy
the above YAML file and create a file af the terminal and apply using kubectl, as shown below (workaround).

— @ Connected fo terminal [RELIEES Aa| Regular - | |22

k8suserikdss-1£fp29-0:~5 1s

mlflow-secret.yaml notebook.yaml

k8suserfkdss-1fp29-0:~5 kubectl create -f notebook.yaml -n testing
kubedirectorcluste u_bedire-:t(-r.hpe.w:c-m/n(.wteh(-(- created

k8susertfkdss-1fp29-0:~

-Access the Notebook from the Notebook Endpoints tab.

; (Acting as Tenant Admin) />
[——1 HPE Ezmeral Container Platform "‘:;fl:;l:::“l; min) (720
Dashboard Notebooks
Users 3

Applications Neotebook Endpoints
Project Repository

Source Control Kubernetes Service Name Role Details KubeDirector Cluster Services Ports Access Points Service Type
Model Registry notebook-controller-rv4vl-0 controller KubeDirectorApp: notebook SSH 22 hpecp-531-vm2.rcclocal 10037 NodePort
Teaini ID: jupyrter-notebook Jupyter 4000 [; E—]
rainin - i hpecp-531-vm2.rcclocal:10038
g Name: Jupyter Notebook with ML toolkits Notebook

FIGURE 53. Notebook Endpoints

-Upload Notebook File and Dataset to run the experiment.
-Login o the Jupyterhub.

‘ jupyter

Warning: JupyterHub seems to be served
over an unsecured HTTP connection. We
strongly recommend enabling HTTPS for
JupyterHub.

Username:
dev1

Password:

FIGURE 54. L ogin fo Jupyterhub

E—

Reference Architecture

Page 60

-AfTer login to Jupyter Notebook upload the care directory Bike-Sharing-MLFlow-UseCase and upload Bike-Sharing-MLFlow.ipynb, day.csv,

and hour.csv from https://github.com/SANDataHPE/ML Flow-Examples/tree/main/Bike-Sharing-MLFlow-Example.

File Edit WView Run Kernel Git Tabs Settings Help

0.

™ + ¢ ¢ & Launcher
Filter files by name Q
L |E| Notebook
0 Name -~ Last Modified
B8 examples 3 minutes ago
. | (™I Bike-Sharing-MLFlow.ipy.. seconds ago "
= | @ e seconds ago
o 9 Python 3
H hour.csv seconds ago
Console
Python 3
Other
Terminal
Simple 0 0 & ©

FIGURE 55. Jupyter Notebook

-Se‘rup ‘ML Flow’ magics.

a. Add the user (which we've logged in to notebook with) to the platform and give it member access to the tenant.

b. Run %kubeRefresh in one of the cells.

"~ Setup ML Flow Magics

Load ML Flow Enviornment variable

*kubeRefresh

Kubeconfig is available to use

%loadMlflow

Backend configured

Set ML Flow Experiment Name

%Setexp --name bikesharetesting

¢. Load MLflow server and the secret to our notebook. Run %1oadmlflow.

P

PySpark

PySpark

Text File

A

Python 3.6 (KF
examples)

A

Python 3.6 (KF
examples)

M

v

Markdown File

2

Python File

Spark

Spark

R File

S

SparkR

S

SparkR

=)

Show Contextual
Help

Launcher

https://github.com/SANDataHPE/MLFlow-Examples/tree/main/Bike-Sharing-MLFlow-Example

Reference Architecture

-ExecuTe cell in Notebook file.

a.

impoct

Page 61

Each notebook cell contains a comment about the task which we are performing in each cell. Read the markdown before executing the
cell. Follow the instruction written in the notebook before executing each cell.

impoct numpy

impoct
impoct

impoct
impoct

mlflow
mlflow.skleacn

pandas as pd

as np

matplotlib.pyplot as plt
seaborn as sns

from mlflow impoct log_metcic, log_pacam, log_actifact

from
from
from
from
from
from

from

sklearn
sklearn
sklearn
sklearn

.ensemble impoct GradientBoostingRegressor

.metrics impoct mean_squaced_eccor

.model_selection impoct KFold, cross_val_score, train_test_split
.inspection impoct pecmutation_impoctance

mlflow.models.signatuce impoct infer_signatuce

sklearn

impoct tree

pydotplus imporct graph_from_dot_data
import graphviz
from IPython.display impoct Image

import itertools

plt.style.use(”fivethictyeight”)
pd.plotting.cegistec_matplotlib_convecters()

import wacnings
wacnings.filtecwarnings(’ignoce’)
bike_sharing = pd.rcead_csv(”houc.csv”)

bike_

sharing

cemove unused columns

bike_sharing.drop(columns=[”instant”, “dteday”, ”“registeced”, “casual”], inplace=Tcue)

use better names
bike_sharing.cename(

)

columns={
“yp”: year”,
“mnth”: ”month”,
“he”: “hour_of _day”,
“holiday”: ”is_holiday”,
“wockingday”: ”is_wockingday”,
“weathersit”: “weather_situation”,
“temp”: “tempecatuce”,
“atemp”: "feels_like_temperatuce”,
“hum”: “humidity”,

“cnt”: "rcented_bikes”,

}s

inplace=True,

show samples

bike_
hour_of_day_agg = bike_sharing.gcoupby([”houc_of_day”]][”cented_bikes”].sum()

sharing

hour_of_day_agg.plot(

kind="1ine”,
title="Total rcented bikes by hour of day”,
xticks=hour_of_day_agg.index,

E—

Reference Architecture Page 62

figsize=(15, 10]),

]
Split the dataset rcandomly into /0% for training and 30% for testing.
X = bike_sharing.drcop(”’cented_bikes”, axis-=1)
y = bike_sharing.rented_bikes
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, candom_state=42]
pcint(£”Teaining samples: {X_train.size}”)
peint(£”Test samples: {X_test.size}”)
def cmse(y, y_pced]:

cetuen np.sqet(mean_squaced_eccoc(y, y_pred])

def rcmse_score(y, y_pred):
scoce = cmse(y, y_pred]
peint (”RMSE score: {:.4f}”.format(score])
cetucn scoce
def cmsle_cv(model, X_train, y_train):
kf - KFold(n_splits=3, shuffle-True, random_state=42]).get_n_splits(X_train.values]
Evaluate a score by cross-validation
cmse = np.sqget(-ccoss_val_scoce(model, X_train.values, y_train, scoring="neg_-mean_squaced_eccoc”, cv=kf]]
cetucn cmse

def rcmse_cv_score(model, X_train, y_train):
scoce = cmsle_cv(madel, X_train, y_train)
peint(”Cross-Validation RMSE scoce: {:.4f} (std = {:.4f})”.focmat(scoce.mean(), score.std(]])
cetucn scoce
def model_feature_importance(model):
feature_importance = pd.DataFrame(
model.featuce_importances_,
index=X_train.columns,
columns=[”Impoctance”],

)

sorct by importance
featuce_impoctance.soct_values(by="Impoctance”, ascending-False, inplace=Tcue]

plot
plt.fiqure(figsize-(12, 8))
sns.bacplot(
data=feature_importance.rceset_index(],
y="index”,
x="Impoctance”,
].set_title(”Featuce Impoctance™)
save image
plt.savefig(”model_actifacts/featuce_impoctance.png”, bbox_inches=’tight’)

def model_pecmutation_impoctance(model]:
p_impoctance = permutation_impoctance(model, X_test, y_test, random_state=42, n_jobs=-1)

sorct by importance

sorted_idx = p_impoctance.impoctances_mean.acgsoct(][::-1]

p_impoctance = pd.DataFrame(
data=p_importance.impoctances[socted_idx].T,
columns=X_train.columns[sorted_idx]

)
plot

plt.fiqure(figsize-=(12, 8))
sns.bacplot(

E—

Reference Architecture Page 63

data=p_importance,
ocient="h"
].set_title(”Pecmutation Impoctance™)

save image
plt.savefig(”model_actifacts/pecmutation_impoctance.png”, bbox_inches="tight”]

def model_tree_visualization({model):

generate visualization

tree_dot_data - tree.export_graphviz(
decision_tree=model.estimators_[0, 0], # Get the first tree,
label-"all”,
featuce_names=X_train.columns,
filled-Tcue,
rounded=Tcrue,
propoction=True,
impucity=False,
precision=1,

)

save image
graph_from_dot_data(tree_dot_data).wecite_png(”model_actifacts/Decision_Tree_Visualization.png”)

show tree
cetuen geaphviz.Soucce(tree_dot_data)
Track params and metrics
def log_mlflow_cun(model, signatuce):
Auto-logging for scikit-leacn estimators
mlflow.skleacn.autolog()

log estimatorc_name name
name = model.__class__.__name__
mlflow.set_tag(”estimator_name”, name]

log input featuces
mlflow.set_tag(”featuces”, sto(X_train.columns.values.tolist(]])

Log tracked pacametecs only
mlflow.log_pacams({key: model.get_pacams()[key] for key in pacameters})

mlflow.log_meteics({
"RMSE_CV’: score_cv.mean(],
"RMSE’: scocre,

})

log training loss
for s in model.train_scoce_:
mlflow.log_meteic(”Train Loss™, s]

Save model to artifacts
mlflow.skleacn.log_model(model, ”model”, signatuce-signatuce)

log charts
mlflow.log_actifacts(”model_actifacts”)

misc
Log all model pacametecrs
mlflow.log_pacams(model.get_pacams()]
mlflow.log_pacam(”Tecaining size”, X_test.size)
mlflow.log_pacam(”Test size”, y_test.size)
GBRT (Gradient Boosted Regression Tree) scikit-leacn implementation

E—

Reference Architecture Page 64

model_class - GradientBoostingRegressor
pacameters = {
”leacning_cate”: [0.1, 0.05, 0.01],
“max_depth”: [4, b, 6],
”vercbose”: True,
}
genecate parametecs combinations
pacams_keys = pacametecrs.keys()
pacams_values = [
pacameters[key] if isinstance(pacameters[key], list] else [pacameters[key]]
for key in pacams_keys
]
cuns_pacameters = |
dict(zip(pacams_keys, combination)] for combination in itertools.product(*pacams_values)

]

training loop
for i, cun_pacameters in enumerate(cuns_parameters):
peint (£”Run {i}: {cun_pacameters}”)

mlflow: stop active cuns if any

if mlflow.active_cun(]):
mlflow.end_run()

mlflow:track cun

mlflow.stact_cun(cun_name=f"Run {i}”)

create model instance
model = model_class(**cun_pacameters)

train
model.fit(X_teain, y_train)

get evaluations scores
scoce = cmse_scoce(y_test, model.predict(X_test])
scoce_cv = cmse_cv_scoce(model, X_train, y_train)

generate charts
model_feature_impoctance(model)
plt.close(]
model_pecmutation_impoctance(model)
plt.close(]
model_tree_visualization(model)

get model signatuce
signatuce = infer_signatuce(model_input-=X_train, model_output-model.predict(X_train))

mlflow: log metcics
log_mlflow_cun(model, signatuce)

mlflow: end tracking
mlflow.end_run()
point(””)

best_cun_df = mlflow.seacch_cuns(ocdec_by=['meteics.RMSE_CV ASC’], max_results=1)
if len(best_cun_df.index) == 0:
raise Exception(f”Found no cuns for expeciment ’{expeciment_name}’”)

best_cun = mlflow.get_cun(best_cun_df.at[0, ’cun_id’])
best_model_uri = f”{best_run.info.artifact_uri}/model”
best_model = mlflow.sklearn.load_model(best_model_uri)
print best cun info

—

Reference Architecture Page 65

peint(”Best cun info:”)

peint(£”Run id: {best_run.info.cun_id}”)

peint (£”Run parcameters: {best_run.data.pacams}”)
peint(”Run score: RMSE_CV = {:.4f}”.focmat(best_run.data.metrics[RMSE_CV’]))
peint (£”Run model URI: {best_model_uri}”)
model_feature_impoctance(best_model)
model_pecmutation_impoctance(best_model)
model_tree_visualization(best_model)
test_predictions = X_test.copy()

ceal output (rented_bikes] from test dataset
test_predictions[”rented_bikes”] = y_test

add "predicted_rented_bikes” from test dataset
test_predictions|[”predicted_rented_bikes”] = best_model.predict(X_test].astype(int)

show results
test_predictions
plot trouth vs prediction values
test_predictions.plot(
kind="scatter”,
x="rented_bikes”,
y="predicted_rented_bikes”,
title="Rented bikes vs predicted cented bikes”,
figsize=(15, 15],

NOTE
We need to install all the required packages for the use case as shown below, if already installed this step can be skipped.

-Visualize the best model.

22]: model_feature_importance (best_model)
L2 R s) [23]: model_permutation_inportance(best_model)

Feature Importance Permutation Importance
hour_of _day hour_of_day e
is_workingda
z BREY is_workingday :
e B
season

iy wronll

S month I
£ numiaity [

humidity '

weather_situation .
feels_like_temperature I

month
weather situation | |

weekday
weekday

windspeed
windspeed |

is_holiday

0.0 01 02 03 0.4 05 06 is_holiday
Importance 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4

Reference Architecture

-Model Artifact in MLflow Server.

a. For the model artifact, we can access the MLflow Server.

m I C Experiments Models

Experiments + bike-sharing-use-case

Experiment ID: 1
Default |

bike-sharing-use-case £ [i ~ Notes [4

None
Search Runs:

Showing 10 matching runs

Start Time Run Name
@ 2021-12-09 13:41:18 Run 8
@ 2021-12-09 13:41:08 Run7
©2021-12-09 13:40:59 Run6
@ 2021-12-09 13:40:47 Run 5
2 2021-12-09 13:40:38 Run 4

21-12-09 13:40:2

Run3

21-12-09 13:40:138 Run2

© 2021
©@2021
@ 2021-12-09 13:40:04 Run 1
©2021-12-09 13:39:49 Run 0
© 2021

FIGURE 56. ML flow Experiments

MONITORING

There are different levels of monitoring with HPE Ezmeral ML Ops.

o At the platform level, the HPE Ezmeral Runtime provides dashboards that allow users to monitor resource uftilization

User

devl

devl

devl

devl

devl

devl

devl

devl

devl

devl

Artifact Location: s3:/miflow/1

Download CSV &

Source

Version

O ipykerne -

Cipykeme -

O ipykerne -

O ipykerne -

O ipykeme -

Cipykeme -

O ipykerne -

O ipykerne -

O ipykeme -

Cipykeme -

Parameters

Test size

5214
5214
5214
5214
5214
5214
5214
5214

5214

Training siz¢

62568
62568
62568
62568
62568
62568
62568
62568

62568

@ State:

Metrics

RMSE RMSE_CV
106.3 109.4
1125 161
1202 1239
463 49.83
53.05 5598
63.15 67.82
419 4497
4469 48.18
51.99 56.55

« At the application level such as Kubeflow, containerized monitoring services such as Istio Prometheus are provided

Active ~

Page 66

GitHub Docs

= | 8 &2 Columns

Tags

Train Loss | estimator_n features

11827.7 Gradien... ['season..
13372.3 Gradien... ['season..
153963 Gradien... ['season...
1935.5 Gradien... ['season...
2916.2 Gradien... ['season..
4317.3 Gradien... ['season..
1323 Gradien... ['season...
1861.2 Gradien... ['season...
2765.7 Gradien... ['season..

Reference Architecture

Kubernetes administrator

Page 67

Kubernetes users who have access to the site admin fenant can view the platform administrator dashboard which presents a high-level overview
of the Kubernetes activity. Figure 57 shows the Usage tab displays usage information on a per-tenant basis. Refer to the HPE Ezmeral Container
Platform 5.3 documentation, Dashboard — Kubernetes Administrator for more details.

Beginning with HPE Ezmeral Runtime 5.3, Dashboard views show additional GPU usage for Tesla-class or Quadro-class GPU families. For site
administrators, the Dashboard — Usage fab shows the GPU devices used system-wide, while for Cluster Admin the stats would show usage
cluster-wide. Finally, for tenant members, the resource usage statistics provide pod-specific GPU device information.

Kubernetes Dashboard

Usage Load Services Status Alerts

0% 0% 0%
Cores Used Memory Used GPU Devices Used
0of 72 0 of 1508 (GB) 0of8
Tenants
Tenant Name Namespace Cluster Name Cores.
mitenant mitenant micluster o=

0/32

FIGURE 57. Platform administrator usage dashboard

Ephemeral Storage Used Persistent Storage Used
00f1635 (GE)

Memory (GB)

0% 6.2%

194.9 of 3129 (GB)

GPU Devices

[o

0/1131 a/8

0%

Tenant Storage Used
0.1 03129 (GB)

Ephemeral Storage (GB)

0/126%

Persistent Storage (GB)

3

Last refreshed Fri Aug 27 2021 15:21:11 Refresh Data

Show Usage against | Tenant Quotav

Tenant Storage (GE) Number of Running Pods
= 0
0/3129 0.1/3129

Figure 59 shows the Load tab displays load statistics for the on-premises CPU, GPU, memory, and network resources within the K8s platform.

Kubernetes Dashboard

Usage Load Services Status Alerfs

All Kubernetes Clusters.

- | ‘ All Kubernetes Hosts

Last Hour -

M |

Host CPU Utilization (Percent) ()

200.00%

Host System Load ()

5.00%

FIGURE 58. Platform administrator load dashboard

—

Host Memory Usage ()

186266

011

Host Network Traffic (Bytes Im (2)

1866

01:15 00:30

Q0:45

01:00

Host Swap Memory Usage &)

01:15 00:30 00:45 01:.00 0L:15

Host Network Traffic (Bytes Out) (2)

953.67M

01:15 100:3 00:45 01:00 01

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/Dashboard__Kubernetes_Administrator.html

Reference Architecture Page 68

Kubernetes tenant/project administrator

HPE Ezmeral Runtime users who are logged into a Kubernetes tenant/project with the tfenant/project administrator role can access the
Kubernetes tenant/project administrator Dashboard. A tenant/project admin has access to the main menu and can view login details, alerts, etc.
For more details, see the Toolbar & Main Menu - Kubernetes Tenant Admin page.

[HPE Ezmeral Container Platform act

ant Adrmin) sparidenants | sdmin

Users ' Dot 5ttt P [Ottt 2 [Do ety oy et

Project Repository

Source Cantrol

Madel Registry
Training
Deploymenrs
DaraTaps
FeMounts
Applications
Natabooks so0 %15 230 2900 1915 13:30. 1900 205 1930

Kubaflow Dashboard o P i i

10:00 ae:18 10:50 2200 1018 1930 10:00 108 1030

FIGURE 59. Tenant/project admin Dashboard

Istio and Prometheus
Prometheus is used for monitoring and Istio is used for managing network communication in the form of a service mesh.

Istio Prometheus use case
-CreaTe funnel for 9090 port via SSH.

S ssh -L 9090:1ccalhost:9090 coot@<master node>

kEsuserikdss-p9twB8-0:~
kEsuserikdss-p9twB8-0:~

print
pri

of known hos

https://docs.containerplatform.hpe.com/53/reference/kubernetes/tenant-project-administration/Toolbar__Main_Menu__Kubernetes_TenantProject_Admin.html
mailto:root@172.30.226.58

Reference Architecture Page 69

-Enable port forwarding.
S kubectl port-forward svc/prometheus -n istio-system 9090:9090

.On the master node, start up the Firefox,and goto S http://127.0.0.1:9090/.

.Selec‘r Status — Targets, and then verify that all targets have been discovered and their statuses are being monitored.

& Prometheus Time Series X | +

“ - ce ® 127.00.1:9090argets BR n @

Prometheus

Al Unhealth

citadel (1/1 up)

Scrape
Endpoint State Labels Last Scrape Duration Error
hitp://10.192.0.167:15014/metrics m 104135 2.793ms
envoy-stats (9/9 up) [
Scrape
Endpoint State Labels Last Scrape Duration Error
hitp:/10.192.0.171:15090/stats/prometheus m 506.000ms 5.496ms

o e s ey SeSRTE T
pod_template_hash="6605d9887c"

hip:110.192.0.244:15090/statslprometheus m app="clstar-ocal-gateway” 122295 2.012ms
istonize component="cluster ocalgatevay”] ramespace="isto system”
Do tame="CluStorIocal gatowsy S4DDSU544D (254" | pod tempate nash="SADDSSEAIS”

hitp:/10.192.0.245:15090/stats/prometheus m app="custarocal-ateway” 2328 2021ms
stonize component="custer ocargatenay”
5o name="clusterocar gatoway S4DDSE44B V2Izs” | pod.Lemplte haSh="SADBEISEA0"

hitp2/10.192.0.250:15090/stats/prometheus m instanco="10192.0250:15090" 129008 2517ms
Namespace="mageadmi | otebook.name="kinb"] pod name="Kinb0"
[eees Jomouser rwsemeres o pod mame=rio']

htp10.192.0.176:15080/satsprometheus @ 637s 1947ms

hitp:/10.192.0.173:15090/stats/prometheus m app="isti-ngressgateway” 6.2865 2.252ms

TS OIS S SR

FIGURE 60. Targets

.Selec‘r Status — Service Discovery, and then verify that all services have been discovered and their statuses are being monitored.

<« c @ D 127.0.0.1:9090/service-discovery 1 n o =

Service Discovery

« citadel (1/88 active targets)
« envoy-stats 9/ 275 active targets)

« galley (1/88 aciive targets)

« istio-mesh (1/88 active targets)

« istio-policy (1./83 active targets)

« istio-telemetry (1/88 active targets)

« kubemetes-apiservers (1./1 active targets)

« kubemetes-cadvisor (2 2 active targets)

« kubemetes-nodes (2/2 active targets)

« kubemetes-pods (6 / 275 active targets)

« kubemetes-service-endpoints (6 / 221 active targets)
« pilot (1/88 active targets)

« kubemetes-pods-istio-secure (0 / 275 active targets)

citadel

envoy-stats [

galley

istio-mesh

istio-policy
istio-telemetry (ERIEED

kubernetes-apiservers [

Kkubernetes-cadvisor

kubernetes-nodes

kubernetes-pods

FIGURE 61. Service Discovery

http://127.0.0.1:9090/

Reference Architecture Page 70

-NavigaTe fo Graph.
<« c @ @ 127.0.0.1:9090/q 30.expr=&g0.tab=16g0.stacked=0&g0.range_input=1 - QO n o =
Enable query history Use local ime Enable autocomplete
Q Expression (press Shift+Enter for newlines)
Table Graph
No data queried yet

FIGURE 62. Graph

-Choose any command you want and select if.

-Click the Execute button and observe the Graph tab.

SUMMARY

Enterprises across all industries are embarking on a hybrid cloud journey for the development and deployment of their data-driven analytics and
Al/ML applications. The confinuous integration/continuous deployment (CI/CD) workflows, collectively referred to as DevOps, have become
ubiquitous for software development today. On the machine learning front, data scientists still spend a significant amount of time and effort
moving projects from development to production. Model version control is still largely manual, making it hard to update models in production.
Code sharing is manual; data copied onto local storage leads to the variability of results between environments. There is a lack of standardization
tools and frameworks, which makes it tedious and fime-consuming o ensure the accuracy of predictions across all environments.

HPE Ezmeral Machine Learning Ops Software (HPE Ezmeral ML Ops) includes the capabilities and functionality of the HPE Ezmeral Runtime
while also providing DevOps like agility to enterprise machine learning. With HPE Ezmeral ML Ops, enterprises can implement CI/CD workflows
and standardize their ML pipelines. The HPE Ezmeral ML Ops software platform supports every stage of the machine learning lifecycle —
supporting sandbox experimentation with a choice of ML/DL frameworks, integrations with model and code repositories, to deploying and
ftracking models in production.

HPE Ezmeral ML Ops gives data scientists and developers the ability to quickly and easily build and train machine learning models. HPE Ezmeral
ML Ops allows data scientists to manage and track models built on any platform and deploy them into a scalable and secure production
environment. Using HPE Ezmeral ML Ops, data scientists can spin-up containerized environments for distributed data processing, Machine
Learning (ML), or Deep Learning (DL) in minutes rather than weeks. HPE Ezmeral ML Ops provides data science teams the flexibility to run their
ML/DL workloads either on-premises, in multiple public clouds, or in a hybrid model and respond to dynamic business requirements in a variety
of use cases.

With HPE Ezmeral ML Ops Software, Hewlett Packard Enterprise is making it easy for organizations to deliver a flexible and secure multitenant
architecture, with the agility, flexibility, and performance needed to address evolving workload and application requirements. HPE Ezmeral ML
Ops is deployed using pre-tested and optimized HPE Apollo building blocks on-premises, as well as in hybrid IT architectures and multi-cloud
models.

Companies are driving digital transformation and investing in innovation to remain competitive. They are looking to deploy modern apps faster
and simplify the production environment in a hybrid cloud architecture. They may have a mandate to move their application portfolio to the
cloud or containers. Many organizations are still struggling to achieve these goals due to a lack of fime and expertise. This Reference
Architecture showcases the “lift-and-shift” application modernization use case which allows organizations to accelerate time-to-value by building
a workable infrastructure the first time and every time.

With the HPE Ezmeral Runtime, enterprises now have a unified Kubernetes-based software solution for DevOps, CI/CD workflow, application
modernization across hybrid cloud architecture, streamlining deployment, and operation with consistent orchestration and management. The
platform acts as the control plane for container management and provides persistent container storage across multiple versions of open-source
Kubernetes for container orchestration. The solution delivers a simpler, more scalable approach to modernizing applications. This is achieved
using a scalable, code-driven container solution that, once assembled, can be configured within hours. This eliminates the complexities associated

—

Reference Architecture Page 71

with implementing a K8s container platform across an enterprise dafa center and provides the automation of hardware and software
configuration to quickly provision and deploy a containerized environment at scale.

The solution provides customers with greater efficiency, higher utilization, and bare-metal performance by “collapsing the stack” and eliminating
the need for virtualization. Developers have secured on-demand access to their environment. They can develop apps and release code faster,
with the portability of containers to build once and deploy anywhere. IT feams can manage multiple Kubernetes clusters with multitenant
container isolation and data access, for any workload, from edge to core to cloud. The benefits of containers, beyond cloud-native microservices-
architected stateless applications, can be extended by providing the ability to containerize monolithic stateful analytic applications with
persistent data.

The combination of HPE Ezmeral Runtime paired with HPE Apollo compute and HPE Nimble Storage delivers a composable architecture that
can rapidly deploy modern containers supporting the new application framework. Ultimately, this results in faster digital transformation for
businesses by helping organizations drastically increase the velocity of application development and accelerate innovation. This Reference
Architecture provides an overview of an enterprise-grade solution that helps organizations increase agility, simplify operations, and deliver a
cloud-like experience while offering a compelling return on investment.

APPENDIX A: KUBEFLOW AND TESTS OF USE CASES

For Kubeflow installation, see the HPE Ezmeral Container Platform 5.2 documentation Kubeflow installation page. For HPE Ezmeral Runtime and
uninstallation, see Uninstalling Kubeflow page.

We have used kubeflow_tutorials.zip, for Kubeflow use case testing which contains sample files for all of the included Kubeflow tutorials. The
testing was done in a non-air-gapped environment.

http://docs.bluedata.com/52_k8s-kubeflow-installation
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/kubeflow/Uninstalling_Kubeflow.html
https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 72

Figure Al shows Kubeflow architecture.

Pipeline Web Server
> Pipeline Pipeline Anrtifact Run Data
Job Job Provenance & Details & Artifact
Creation History Metadata Ul Debugging Visualization

CLI, Python SDK

(Notebook)
Y
Orchestration Machine Leaming Artifact Storage
System r Metadata Service
Pipeline
Service Store .
Create
Resource
Data Artifact
Storage Service for
Kubametes B Watch Pipeline pipeline packages,
® e AP Server [Pmm metrics, views, etc
ubermetes Minio Server,
key/value store ()
\ A
Core Kubeametes Kubeflow/Pipeline Orchestration Controllers
Controllers
Argo Workflow Scheduled Data Driven
POD Task Driven Workflow ‘Workflow
Controller Workflow Controller Controller
Controller
Distributed HP Tuning Serving
Job Controller Controller
Controller
\i
Kubernetes Mode (Virtual Machine) Kubernetes Mode (Virtual Machine)
POD POD FOD POD Store
Container Container Container Container

FIGURE A1. Kubeflow architectural diagram

Reference Architecture Page 73

KubeFlow components
The following table lists the components that Kubeflow can deploy.

TABLE A1. Kubeflow Components (Kubeflow Operator version 1.2)

Component Version

. __|
Argo 230

Dex 2220

Istio 131
Grafana 602
Jupyter Web Application 100

Katib vlbetal
Kiali 140
Kfserving 030
Kubeflow Dashboard 100

ML Metadata 0211
Notebook Controller kf-ecp-5.3.0
Pipelines 104
PyTorch 100
Seldon 140
Spartakus 110
TensorFlow 100

Kubeflow components use cases GitHub issue summarization - Training with Jupyter
The steps followed in this Tutorial: GitHub Issue Summarization can be found in the official BlueData Documentation.

To begin with the Kubeflow examples:
-Log in to HPE Ezmeral Runtime.

Sign in to
HPE Ezmeral
Container Platform

Username

imageadmirl

Password

Signin
FIGURE A2. HPE Ezmeral Logging Page

—

https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/tutorials/kubeflow/Tutorial_GitHub_Issue_Summarization__Training_with_Jupyter.html

Reference Architecture Page 74

-SelecT the Tenant and navigate to Kubeflow Dashboard.

1 HPE Ezmeral Container Platform

pe
(Acting as Tenant Admin) tenantMLOps2 / admin \\/

Dashboard

Dashboard
Users 2

Download HPE Kubectl Plugin Download Kubectl Download Kubecenfig / Copy Secret v

Project Repository

‘ All Pods (aggregated) - ‘ ‘ Last Hour - ‘

Source Control

Node CPU Usage Percent @ Pod CPU Usage Nanocores @ Pod CPU Limit Percent @

Model Registry

Training

Deployments
DataTaps 1
FsMounts 1

Applications

Notebooks 12:45 13:00 13:15

Kubeflow Dashboard

Pod Memory Limit Percent @

Node Memory Usage Percent @) Pod Memory Usage in Bytes @

D Terminal not initialized for the user

FIGURE A3. Navigating Kubeflow Dashboard

-A list of Notebook Servers in Kubeflow Dashboard appears.

78 Kubeflow

3 imageadmin (Owner) ¥

Quick shortcuts

Upload a pipeline

Pipelines

-~

+ View all pipeline runs

Pipelines

’ Create a new Notebook server
Notebook Servers

4_ View Katib Experiments
Katib

+ View Metadata Artifacts

Artifact Store

FIGURE A4. NB Servers in Kubeflow Dashboard

—

Dashboard Activity

Recent Notebooks

E FinancialTimeSerieswithFinanceData.i...
Accessed 11/20/2020, 1:32:33 PM

demo.ipynb
Accessed 11/20/2020, 12:31:19 PM
Accessed 11/20/2020, 11:26:06 AM

random-example.yam|
Accessed 11/20/2020, 11:17:17 AM

example_manifests
Accessed 11/20/2020, 11:00:33 AM

pytorchjob-example.yaml
B
B
| B

Recent Pipelines

Documentation

Getting Started with Kubeflow
Get your machine-learning workflow up and Z
running on Kubeflow

MiniKF
A fast and easy way to deploy Kubeflow Z

ocally

Microk8s for Kubeflow
Quickly get Kubeflow running locally on Z
native hypervisors

Minikube for Kubeflow Z

Quickly get Kubeflow running locally

Kubeflow on GCP

Running Kubeflow on Kubermnetes Engine and @
Google Cloud Platform

Kubeflow on AWS
Running Kubeflow on Elastic Container E

Reference Architecture

-SelecT Notebook Servers and create one with the following instructions:
a. Inthe Data Volume section, select ReadWriteMany.
b. Change the Mount Path to a shorter name, such as /data.
c. Leave the Workspace Volume as-is.

d. Spawn the notebook by clicking Launch at the end of the page.

E Name

Specify the name of the Notebook Server and the Namespace it will belong to.

Name Mameszpace
nb-kf imageadmin
& Image

A starter Jupyter Docker Image with a baseline deployment and typical ML packages
[Custermn Image
Image

ag

ger.io/mapr-252711/kf-ecp-5.3.0/tensorflow-2.1.0-notebock-cpulatestC

& CPU/RAM

Specify the total amount of CPU and RAM reserved by your Notebook Server. For CPU-intensive workloads, you can choose
more than 1 CPU (e.g. 1.5)

CPU

10

& Workspace Volume
Configure the Volume to be mounted as your personal Workspace

[[] Don't use Persistent Storage for User's home

ype Name Size Mode Mount Point

-

New workspace- nb-kf 10Gi ReadWriteOnce ¥ home/jovyan

& Data Volumes

Configure the Volumes to be mounted as your Datasets.

+ ADD VOLUME
Type Name Size Mode Mount Foirtt
New - nb-kf-vol-1 106Gi ReadwriteMany 7 /data

= Configurations

Extra layers of configurations that will be applied to the new Notebook. (e.g. Insert credentials as Secrets, set Environment
Variables.)

Configurations

FIGURE A5. NB Servers

—

Page 75

Reference Architecture Page 76

e. Connect to the Notebook Server created.

Notebook Servers + NEW SERVER
Status Name Age Image CPU Memory Volumes
Q imageadmin 3 daysago tensorflow-1.15.2-notebook-cpu:1.0.0 5 10Gi : CONNECT 'i

FIGURE A6. NB Servers in Ready State

-Open a new terminal from the Jupyter Hub and follow the steps below:

a. Download the kubeflow_tutorials.zip file, containing sample files for all of the included Kubeflow tutorials.
S pwd
/home/jovyan

S wget kubeflow_tutorials.zip

b. Ina non-air-gapped environment only, execute the following commands to create the mapr-image-pull secrets and patch the Notebook.
This must be done before pulling the Jupyter Notebook image for this tutorial.

S kubectl apply -f imagepull-secrets.yaml
seccet/mape-imagepull-seccets created

S kubectl patch serviceaccount default-editor -p *{”imagePullSecrets™: [{”name”: “mapc-imagepull-
seccets”}]}’
serviceaccount/default-editor patched

c. Connect to the Notebook, then open a new terminal, and then clone the Kubeflow examples repo:

S git clone https://github.com/mape/kubeflow-examples.git

d. Return to the Jupyter folder list, and then open the file:

S kubeflow-examples/github_issue_summarization/notebooks/Training.ipynb

"~ Jupyter Quit

Filas Running Clusters

Duplicate Rename Move Download WView Edit n Upload Mew~= &
-1 ~ W/ example_manifests | secrets | kubeflow-examples | github_issue_summarization /| notebooks Name < Last Modified File size
[l seconds ago
O test_data 26 minutes ago
& Training.ipynb 28 minutes ago 159 kB

FIGURE A7. Training Notebook

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://github.com/mapr/kubeflow-examples.git

Reference Architecture Page 77

e. Inthe Set path for the data_dir cell, change the data dir fo:
%env DATA_DIR=/data

In []: # Set path for data dir
%env DATA_DIR=/data

f. Inthe pre-process data for the Deep Learning cell, comment out the magic function:
%%time

In [1: #%%time
Clean, tokenize, and apply padding / truncating such that each document Length = 7@
also, retain only the top 8,000 words in the vocabulary and set the remaining words
to 1 which will become common index for rare words
body_pp = processor(keep_n=8000, padding_maxlen=70)
train_body_vecs = body_pp.fit_transform(train_body_raw)

g. To execute each of the cells in the Notebook, either:
. Click the Rerun button fo run all the steps.
ll. Click the Run button to manually run each step one at a time.
h. After training completes, use the Notebook terminal to copy the files to the MapR file system:

S cd kubeflow-examples/github_issue_summarization/notebooks/
$ cp *.h5 /data/
S cp *.dpkl /data/

$ cd kubeflow-examples/github issue summarization/notebooks/

5 1s

body pp.dpkl segZseq model tutorial.h5 train title vecs.npy

Dockerfile segZseq utils.py tutorial seqgZseq.epoch0l-val7.19677.hdf5
Dockerfile.estimator test data tutorial segZseq.epoch0Z2-val6.43952.hdf5
environment seldon rest title pp.dpkl tutorial segZseq.epoch03-valb.395483.hdfb

github-issues-data train body vecs.npy tutorial segZseq.epoch04-valb5.61074.hdf5
IssueSummarization.py trainer.py tutorial segZseqg.epoch05-val5.37961.hdf5
Makefile Training.ipynb tutorial segZseq.epoch06-val5.19002.hdf5
| _pycache train.py tutorial segZseq.epoch07-val5.10789.hdf5
requirements.txt train test.py tutorial seqgZseq.log

S cp *.h5 /data/

S cp *.dpkl /data/

GitHub issue summarization - Serving with Seldon
Download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials.

This tutorial uses the following image idzikovsky/sandbox:seldon-issuesum.

-Apply the deployment by executing the following command.

S kubectl apply -f seldon-issue-sum-deployment.yaml
Seldondeployment.machinelearning.seldon.io/issue-summarization created
-Verify that the Seldon deployment was created.

S kubectl get sdep
NAME AGE
issue-summacization 2mbés

E—

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 78

-Verify that the pods are running.

S kubectl get pods | grep classifier
issue-summacization-example-0-classifier-53fbc99c8-9zt6 2/2 Running 0 /m8s

.ConnecT to the Notebook and upload the file seldon-request.py tosend a sample request to the server model.

(=] 1 ~ BB/ example_manifests / scripts Name ¥ Last Modified File size
D.. seconds ago

o0 kfserving-request.py 7 days ago 1.54 kB

O seldon-request.py 7 days ago 129 kB

-In the Notebook terminal, install the following Python dependencies.

S pip install requests Ixml --user

-Execu‘re seldon-request.py with the following options.

S python seldon-request.py http://istio-ingressgateway.istio-system.svc.cluster.local:80 imageadmin hp123456
imageadmin issue-summacization
{’data”:{”names”:[”t:0”],”ndaccay”:[[”add suppoct for for”]]},”meta”:{}}

-To delete the deployment, execute the following commands.

$ kubectl get sdep
NAME AGE
issue-summarization 18m

S kubectl delete sdep issue-summacization
Seldondeployment.machineleacning.seldon.io “issue-summacization” deleted

Training with TensorFlow (Financial series)

Before beginning this tutorial, download the kubeflow tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials.
Step 1: Mount the MapRFS Directory

To mount the MapRFS directory:

.ObTain pvc-tf-training-fin-secies.yaml from the zip file mentioned above for the Persistent Volume Claim (PVO).
-Apply the .yaml file to create the PVC:
S kubectl apply -f pvc-tf-training-fin-series.yaml

5 kubectl apply —f financial-series—-tfjob.vyaml
tfjob.kubeflow.org/trainingjok configured

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 79

-Verify that the PVC was creafed and is in the bound state:
S kubectl get pvc

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY STORAGECLASS
AGE

data Bound mapr-pv-e3686806-4252-404d-8£9a-0b00£85b7013 10Gi p; hecp-mapr-cluster
8d

imageadmin-vol-1 Bound mapr-pv-dlcB80efl-1£69-46fe-ad2c-d1£e93055d39 10Gi hecp-mapr-cluster
12d

k tebookl-vol-1 Bound mapr-pv-al3cdl6£-815a-4745-ble7-14£87760c549 10Gi hcp-mapr-cluster
l4d

pvcpy Bound mapr-pv-9002baba-13e3-4cd7-8622-25430d381ed2 5G1 hcp-mapr-cluster
12d

pvctf Bound mapr-pv-2feaa310-19£0-48ff-94c3-10e2a9%bp1a498 5G1 hcp-mapr-cluster
l4d

voval-vol-1 Bound mapr-pv-76d19390-6lce-4alc-bBc6-b148bc092963 10Gi hcp-mapr-cluster
15d

Step 2: Exploration phase

To complete the exploration phase:

-Open the Kubeflow web interface.

-Follow the procedure based on the example described here (link opens an external website in a new browser tab/window) to spawn the
Notebook. Do not create a Data Volume; simply select New Workspace and leave the remaining options set to their default values.

-ConnecT to the Notebook server, and then open a terminal.
-Execu‘re the following command:

S curl
https://caw.githubusercontent.com/kubeflow/examples/master/financial_time_secies/Financial%20Time%20Secies%20w
ith%20Finance%200ata.ipynb --output FinancialTimeSecieswithFinanceData.ipynb

$ curl https://raw.githubusercontent.com/kubeflow/examples/master/financial time series/Financial%20Time%20Series%20with%20F
inance%20Data.ipynb —-—output FinancialTimeSerieswithFinanceData.ipynb
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 47939 100 0 178k 0 ——:-——:1—— ——:1——:1-— ——:1-—:—— 178k

1

.Open the uploaded Notebook.

Jo -~ W/ Name ¥ Last Modified File size
[[0 example_manifests 6 days ago

0 O Kf-tutorials 9 days ago

O O nat 8 days ago

O O pipelines 12 days ago

) [scripts 9 days ago

O [secrets 9 days ago

) & demo.ipynb 12 days ago 18.9 kB
dJ financialSeries-tf-Training-working-example.ipynb Running @daysago 3.13MB
() & FinancialTimeSerieswithFinanceData.ipynb 15 minutes ago 47.9kB
00 kfservingtest.py 9 days ago 1.63 kB

FIGURE A8. Financial Time Series with Finance Data Notebook

-WaIkThrough the Notebook step by step to better understand the problem and suggested solution(s).

E—

https://github.com/kubeflow/examples/tree/master/financial_time_series#exploration-viajupyter-hub

Reference Architecture

Step 3: Training phase
To complete the training phase:
-If required, use the already-pushed image nskopiuk/sandbox:tensorflowimage-finseries, else skip to step 3 if not.

-Build and push the image.

S git clone https://github.com/mape/private-kubeflow-examples.git cd peivate-kubeflow-
examples/financial_time_series/tensocflow_model expoct TRAIN_PATH= <youc-docker-
username>/sandbox:tensorflowimage-finseries docker build -t STRAIN_PATH . docker push STRAIN_PATH

-ObTain the secrefs file user-gcp-sa from the zip file mentioned above (required for this example).
S kubectl create secret generic user-gcp-sa --from-file user-gcp-sa.json
-Apply the TF-training job using the .yaml file from the zip file mentioned above.
S kubectl apply -f financial-series-tfjob.yaml

5 kubectl apply —f financial-series-tfjob.yaml

tfjob.kubeflow.org/trainingjob configured

e

-\/erify that user-gcp-sa is mounted.

S kubectl exec -it trainingjob-ps-0 -- /bin/sh
ls /auth/
usec-gcp-sa.jsan

-Verify that the TF-job trainingjob was successfully created.
S kubectl get tfjobs

5 kubectl get tfjobs
NAME STATE

trainingjob Succeeded

S

-\/erify that pods were created, run, and completed.
S kubectl get pods | grep trainingjob

$ kubectl get pods | grep trainingjob
trainingjob-ps-0 Completed

trainingjob-worker-0 Completed

S

Page 80

Reference Architecture Page 81

-Check the logs to see the tfraining job description.
S kubectl logs trainingjob-ps-0 tensorflow

$ kubectl logs trainingjob-ps-0 tensorflow

INFO:root:getting the ML model...

INFO:root:getting the data...

INFO:root:generating training data...

INFO:root:defining the training objective...

2020-11-23 22:03:46.400338: I tensorflow/core/platform/cpu_feature guard.cc:140] Your CPU supports instructions that this Te
nsorFlow binary was not compiled to use: 5SE4.1 SSE4.2 AVX AVX2 AVX512F FMA
INFO:root:training the model...

INFO:root:training took 19.19 sec

INFO:root:validating model on test set...

INFO:root:Exporting model for tensorflow-serving...
INFO:tensorflow:Assets added to graph.

INFO:tensorflow:Assets added to graph.

INFO:tensorflow:No assets to write.

INFO:tensorflow:No assets to write.

INFO:tensorflow:SavedModel written to: b'model/l/saved model.pb'
INFO:tensorflow:SavedModel written to: b'model/l/saved _model.pb'
INFO:root:copy files to /data/model/1l

5000 0.5607639

10000 0.5755208

15000 0.5946181

20000 0.6145833

25000 0.6302083

30000 0.6449653

Precision 0.9142857142857143

754189944134074
06944444444444

Serving a TensorFlow model with KFServing (Financial series)
Before beginning this tutorial, download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow futorials.

Step 1: Create and apply the YAML file

To complete the tutorial:
-ObTain the serving YAML file from the zip file mentioned above.

-Apply the file.
S kubectl apply -f financial-series-serving.yaml

5 kubectl apply —-f financial-series—-serving.yaml

inferenceservice.serving.kubeflow.org/finance—-sample unchanged

-Verify that the inference service, revision, and relevant pods have been created.

KSVC:
S kubectl get ksvc

$ kubectl get ksvc

NAME URL LATESTCREATED
LATESTREADY READY REASON

finance-sample-predictor-default http://finance-sample-predictor-default.imageadmin.example.com finance-sample-predictor
—default-mhjwg finance-sample-predictor-default-mhjwg True
5

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 82

Revision:

S kubectl get revision
$ kubectl get revision

NAME CONFIG NAME K8S SERVICE NAME GENERAT

ION READY REASON
finance-sample-predictor-default-mhjwg finance-sample-predictor-default finance-sample-predictor-default-mhjwg
True

s

Inference Services:
S kubectl get infecencesecvices

5 kubectl get inferenceservices
NAME URL READY DEFAULT TRAFFIC CANARY TR

AFFIC AGE
finance-sample http://finance-sample.imageadmin.example.com/vl/models/finance-sample True 100
5d1léh

Paods:
S kubectl get pods | grep finance-sample

5 kubectl get pods | grep finance-sample
finance-sample-predictor-default-mhjwg-deployment-7549£689ftktm 2/2 Running

s

.Verify that virtual services have been created.

S kubectl get victualservices | grep finance-sample

$ kubectl get virtualservices | grep finance-sample
finance-sample [kubeflow-gateway.kubeflow knative-serving/cluster-local-gateway] [finance-sample.

imageadmin.example.com finance-sample.imageadmin.svc.cluster.local]
5d16h
finance-sample-predictor-default [knative-serving/cluster-local-gateway kubeflow/kubeflow-gateway] [finance-sample—

predictor-default.imageadmin finance-sample-predictor-default.imageadmin.example.com finance-sample-predictor-default.imagea
dmin.svc finance-sample-predictor-default.imageadmin.svc.cluster.local] 5dleh
finance-sample-predictor-default-mesh [mesh] [finance-sample—
predictor-default.imageadmin finance-sample-predictor-default.imageadmin.svc finance-sample-predictor-default.imageadmin.svc
.cluster.local] 5dléh

Step 2: Perform inferences against the served model

To send a request to the model:
-ObTain kfserving-request.py from the zip file mentioned above.
-Ins‘rall the following Python dependencies.
S pip install cequests 1xml -user
.Launch kfserving-request.py with the following options.

python kfserving-request.py <base_url> <login> <passwocd> <profile_name>
For example:
S python kfseving-request.py http://cv-hep-1bl.qa.lab:10046 imageadmin 12341234 imageadmin

-To send requests from the Jupyter Notebook terminal, use the ingressgateway address (istio-ingressgateway.svc.cluster.local). For example:
S python kfsecving-request.py http://istio-ingressgateway.istio-system.svc.cluster.local:80 imageadmin
12341234 imageadmin

The output will be similar to the following:
200
{’predictions’: [{’model-version’: *1°, ’prediction’: 0}]}

E—

Reference Architecture

Training a PyTorch model (PyTorch MNIST)

Download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials, if desired.

1. Obtain vim pytorch-mnist-ddp-cpu.yaml from the zip file mentioned above.

S vim pytocch-mnist-ddp-cpu.yaml

-CreaTe the PyTorch Job.
S kubectl apply -f pytorch-mnist-ddp-cpu.yaml
pytocchjob.kubeflow.ocg/pytocch-mnist-ddp-cpu created
.Verify that the PyTorch job was created.

S kubectl get pytorchjobs
NAME STATE AGE
pytoecch-mnist-ddp-cpu Succeeded 108s

-Verify that relevant pods have been created.

S kubectl get pods -1 pytocch-job-name=pytorch-mnist-ddp-cpu
NAME READY STATUS RESTARTS AGE

pytocch-mnist-ddp-cpu-master-0 0/1 Completed O 10m
pytocch-mnist-ddp-cpu-wocker-0 0/1 Completed O 10m
pytocch-mnist-ddp-cpu-wocker-1 0/1 Completed O 10m
pytocch-mnist-ddp-cpu-wocker-2 0/1 Completed O 10m

-InspecT the logs to observe PyTorch training progress:

Page 83

S PODNAME=S({kubectl get pods -1 pytorch-job-name=pytorch-mnist-ddp-cpu,pytorch-replica-type=master,pytorch-

replica-index=0 -0 name)
kubectl logs -f S{PODNAME}S

-Verify the PyTorch Job pod statuses, and wait until all pods show the status Completed.

S kubectl get pods -1 pytocch-job-name=pytorch-mnist-ddp-cpu

-Check the logs again to verify that the output contains the following information.

S kubectl logs -f S{PODNAME}S
Using CUDA
Using distributed PyTorcch with gloo backend

Downloading http://yann
Downloading http://yann
Downloading http://yann
Downloading http://yann
Processing. ..

Done!

.lecun
.lecun
.lecun
.lecun

Train Epoch: 1 [58880/60000 (
Train Epoch: 1 [538520/60000 (

accuracy=0.9664

98
99

.com/exdb/mnist/train-images-1idx3-ubyte.gz
.com/exdb/mnist/train-labels-idx1-ubyte.gz
.com/exdb/mnist/t10k-images-idx3-ubyte.qgz
.com/exdb/mnist/t10k-labels-idx1-ubyte.qgz

%)] loss=0.2060
%)] loss=0.0644

-Use the desceibe command to check PyTorch job status.

S kubectl describe pytorchjobs pytoecch-mnist-ddp-cpu

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 84

The output should look similar to the following:

Type e ge From

Normal ¢ sfulCreatePod pyto —operator 'reated pod: pytorch-mnist-ddp u-worker—0

Normal & 2gafulCreatePod pyto —-operator ‘reated pod: pytorch-mnist-ddp u-worker-1

Normal & sfulCreatePod pytorch-operator ‘reated pod: pytorch-mnist—ddp uu-—worker—2

Normal & sfulCreatePod pyto —operator rated pod: pytorch-mnist—ddp u-—master—>0

Normal ¢ ssfulCreateService pytorch-operator Created service: pytorch-mnist-ddp yu-master—0

Normal PyTorchJdobS eded] pvtorch-operator PyTorchJob pytorch-mnist-ddp-cpu is successfully completed.

Additional information
After training is complete, the files will be located in the MapR file system.

S ssh rootfl<controller node_ip_address>
bdmapc --coot bash
hadoop fs -1s <volumePath>/pytocch/model

Result:

Found 1 items
-pw-c--p-- 3 root 88548 2020-07-15 09:36 /mapr-csi/k8s-10--siaitqqucc/pytorch/model/model cpu.dat

Sample Pipeline in the pipelines interface
Refer to an example from the Kubeflow documentation (The link opens an external website in a new browser tab/window).

.Open the Kubeflow dashboard (see Accessing the Kubeflow Dashboard), and then select Pipelines.

{7 Kubeflow @ imageadmin (owen =

Dashboard Bctivity

Guick shortcuts Recent Motebooks

4 Upload a pipeline E t.esT

4 View all pipeline runs FinancialTimeSereswithFinanceData. ipynb
+ Create a new Notebook server .El example_manifests

View Katib Experiments EI kubeflow_tutarials_zip 2.

+ View Metadata Artifacts nat

Recent Pipelines

FIGURE A9. Kubeflow Pipeline

.Click the sample name [Tutorial] DSL- Control Structures.

E—

https://www.kubeflow.org/docs/pipelines/pipelines-quickstart/#run-a-basic-pipeline
https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/kubeflow/Accessing_the_Kubeflow_Dashboard.html

Reference Architecture Page 85

— .":3 Kubeflow P imageadmin (oween -

ipeli ipeli + Upload pipeline Refresh
th= Fipsines Pipelines pload pip

¥ Experiments

«® Artifacts

a Pipeling mamao Deseription Upleaded on ¥
B Executions [[Tutorial] DSL - Gonfrol structures sowcs code Shows how 1o use conditional execulion and exil handlers. This pipeline will randamiy fail to de 11162020, 2. 38 50 PM
a [Tutonal] Data passing in python ¢ sowca code Shows how to pass data between pylhon components. 11162020, 2:38:40 PM
B Archive a » [Demo] TFX - Ins classification pip. sourca code. Example pipaline that classifies kis Nlower subspecies and how 1o use native Keras within TFX 11162020, 2:38:48 PM
D » [Dema] TFX - Taxi tip prediction m. sowrce coda GCP Permission requirements. Example pipedine thatl does classification with model analysss b T1MG2020, 2:38:47 PM
E Documentation © D » [Demao] XGBoost - Training with c source code GCP Parmis: equiraments. A traines that does end-to-end distributed training for XGBoost T1ME/2020, 2.38:46 PM

Rows perpage: 10 =

FIGURE A10. Kubeflow Pipeline Dashboard

.Click Experiments, and then follow the on-screen prompts.

= :&‘ Kubeflow P imageadmin (owner)

Experiments

o3 Pipelines .
< New experiment

« Experiments . .
Experiment details

Think of an Experiment as a space that contains the history of all pipelines and their associated runs

. .
., Artifacts Experiment name *

Pipeline_test

> Executions Description (opticnal)

Testing pipeline interfacd

B Archive
) -

FIGURE A11. Create new Experiment

Reference Architecture

-Emer the Run details and click Start.

= q’fo‘ Kubeflow P imageadmin (owner) ¥

Run details

o® Artifacts
[Tutorial] DSL - Contrel structures

P Executions PpFieaeron
[Tutorial] DSL - Contrel structures

Run name™

Choose

Choose

B Archive Run of [Tuterial] DSL - Control structures (b07c3)

Description (optional)

B Documentation @

This run will be associated with the following experiment

) GithubRepo @ S
Pipeline_test

& AlHubSamples &

ce Account (Optional)

Run Type

@ One-off O Recurring

Run parameters

This pipeline has no parameters
Version: unknown

m Skip this step
Renaort an lssue

FIGURE A12. Creafe Run

.Selec‘r the run that was created in step 4 on the Experiments dashboard.

= ‘{f“ Kubeflow P imageadmin (owner) +

Experiments
= Pipelines

< Pipeline_test

« Experiments

Recurring run configs Experiment description
A Testing pipefine Interface
«® Artifacts Oactive
Manage

P Executions

Runs
B Archive er runs
B Documentation @ [J FRunnome

D Run of [Tutorial] DSL - Control structures {(b07c3)
() GithubRepo @

§ AlHubSamples &

FIGURE A13. Select Run on Experiments Dashboard

—

This run will use the following Kubernetes service account. e

Duration

Choose

Refresh

+ Create recurring run

Pipeline Version Recurring Run Start time ¥

[Tutorial] DSL - Control structures - 12/3/2020, 124141 AM

Rows perpage” 10 =

Page 86

Archive

Reference Architecture Page 87

-Explore the graph and other aspects of the run by clicking the graph components and other interface elements.

Experiments » Pipeline_test

¢ @ Run of [Tutorial] DSL - Control structures (b07c3)

Graph Run output Config
Flip coin op o Print op]
condition-2 gl Fail op 0 Get random int op o
condition-7 e Print op 9

FIGURE A14. Run Graph

Running a pipeline in Jupyter Notebook
Before beginning this tutorial, download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow futorials.

-CreaTe a Jupyter Notebook.
.ConnecT to the Notebook, and then click New Terminal.
-Clone the kubeflow/pipelines repo:
S git clone https://github.com/kubeflow/pipelines.git

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://github.com/kubeflow/pipelines.git

Reference Architecture

-ReTurn to theFiles tab, and then open the Notebook:
S pipelines/sam ples/core/lightweight_component.ipynb

Files Running Clusters
Select items to perform actions on them.
[(Jo ~ @/ pipelines /| samples / core/ lightweight_component

O.

(J & lightweight_component.ipynb

FIGURE A15. Lightweight Component Notebook

-ExecuTe each cell in the Notebook unfil it is finished.
-Follow the Notebook link to the created experiment in the Pipelines interface.

Submit the pipeline for execution

In [8]: #Specify pipeline argument values
arguments = {"a": '7", 'b': '8'}

#submit a pipeline run

Run the pipeline on a separate Kubeflow Cluster instead

4
Experiment details.
Run details.

Out[2]: RunPipelineResult(run_id=7efcb379-fbbB-43af-b2d7-242860893a81)

-Follow the Notebook link to the created run in the Pipelines interface.

Experiments
+ Pipelines

< Default
<& Experiments
Recurring run configs Experiment description [}
All runs created without specifying an experi
«® Antifacts 0 active
Manage
P Executions
Runs
B Archive Fiter uns
B Documentation & [] Runname Status Duration Pipeline Version
[0 calc_pipeline 2021-08-18 20-13-27] 0:02:58 [View pipeling]

() GithubRepo &

$ Al Hub Samples &

FIGURE A16. Calc Pipeline Run

—

kfp.Client().create_run_from_pipeline_func(calc_pipeline, arguments=arguments)

+ Create recurring run

Recurring Run

(use if your notebook is not running in Kubeflow - e.x. if using AI Platform Notebooks)
kfp.Client(host="<ADD KFP ENDPOINT HERE>').create_run_from pipeline_func(calc_pipeline, arguments=arguments)

Start time ¥/

8/18/2021. 3:13:27 PM

Page 88

#vvvvvvvvy This Link Leads to the run information page. (Note: There is @ bug in JupyterlLab that modifies the URL and makes the |

4

Refresh Archive

quotient remainder

1.000 3.000

Rows perpage: 10 +

Reference Architecture Page 89

Experiments » Default

¢« @ calc_pipeline 2021-08-18 20-13-27

Graph Run output Config

Run details

Status Succeedad
Description

Created at 8/18/2021, 3:13:26 PM
Started at 8/18/2021, 3:13:27 PM
Finished at 8/18/2021, 3:16:25 PM
Duration 0:02:58

Run parameters

7
b 3
C 17

FIGURE A17. Run Details

Here are some general pipeline viewing steps from the Pipelines Dashboard interface:

.Open the Experiments page in the Pipelines dashboard.

] {f; Kubeflow P imageadmin (Qwner) ¥

o Pinalines Experiments + Create experiment Refresh

+ Experiments

All experiments All runs
eriment
o® Artifacts
> Executions
Experiment name Description Last 5 runs

2 PipelineExperiment]
B Archive)

b PipelineTest (1]

» Default All runs created without specifying an experiment will be grouped here.]

B Documentation
Rows perpage: 10 w

FIGURE A18. Experiments Dashboard

—

Reference Architecture Page 90

.In the All experiments tab, expand the Default group, and then view the pipeline graph and details per step by clicking the appropriate (view
pipeline) link.

.In the All runs tab, click the name of the run to view the Graph, Run output, and Config fabs.
Experiments » Default

& @ calc_pipeline 2021-08-18 20-13-27

Clone run Archive

« Experiments
Graph Run output Config

X calculation-pipeline-2p65r

InputiOutput Visualizations ML Metadata Volumes Logs Pod Events

l Input parameters

My divmod 9 add-Output "o
b B

l Input artifacts

Output parameters

my-divmod-quotient 10

Qutput artifacts

mlpipeline-ui- metadata minio:/mipipeline/arti

mlpipeline-metrics minio-//mipipel

my-divmod-quotient minio://mipipel

my-divmod-remainder minio://mipipelinefar
FIGURE A19. Pipeline Run Graph

Katib Hyperparameter Tuning
Example 1: TensorFlow
-Download the Kubeflow tutorials zip file which contains sample files for all of the included Kubeflow tutorials.

.EdiT the tensorflow-example.yaml to put the following on the pod template.

metadata:
annotations:
sidecar.istio.io/inject: “false”

-Deploy the example.
S kubectl apply -f tensorflow-example.yaml
.Open the Kubeflow Dashboard, and then select Katib.

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 91

.Click the leff menu button, and then go to HP — Monitor.

— - .
= q'[.‘ Kubeflow @ imageadmin (Owner) ¥

Experiment Monitor

amespace

- Name ‘ Created ‘ Running ‘ Restarting ‘ Succeeded ‘ Failed

UPDATE

v pytorchjob-example
mag i

random-example
v e P

FIGURE A20. Katib HP Monitor

-Click the experiment name, and then observe the running ftrials.
-Check the experiment status:
S kubectl get experiment

S kubectl get experiment
NAME STATUS
pytorchjob—example

random—example

=

b=

Reference Architecture Page 92

-Check the experiment trials.
S kubectl get trial

s

5 kubectl get trial

NAME TYPE STATUS
pytorchjob—-example-2flzmzb9 Succeeded True
pytorchjob—-example—-4ghbxrl9 ede True
pytorchjob—-example-55gj2kpx ede True
pytorchjob—-example—-55w2j4dx6 ede True
pytorchjob—example-58f9gtwc ede True
pytorchjob—-example—-5gwd5srs ede True
pytorchjob—example-T7xsvgggz ede True
pytorchjob—-example—-dgtmjp81l ede True
pytorchjob—example-hkjgZhzm ede True
pytorchjob—-example—wvtd47rnv ede True
pytorchjob—-example—-zxlzvb6] ede True
pytorchjob—-example—-zzsglcY9r ede True
random—-example—-25gr9zqw ede True
random—example—8cmpk) ede True
random-example—c5h?z ede True
random-example-d9lsc7j1l ede True
random-example—-dmwcldxb ede True
random—example—gmbZncgg ede True
random-example—kdpépgjp ede True
random-example—1ptj9mkv ede True
random-example—lpv84kvs ede True
random-example-m9kzdnmw ede True
random-example—-nkkrz4dnr ede True
random-example—-spbhhs8s ede True

S

accuracy --Ir --momentum
0.089 0.044 0.894
0.989 ——

0.983 0.014 0.524

FIGURE A21. Katib HP Tuning

E—

Reference Architecture Page 93

Example 2: Random algorithm
The following hyperparameters can be tuned:

--1c - learning rate
--num-layers - Number of layers in the neural netwocks
--optimizer

To launch an experiment using the random algorithm example:

-Download the kubeflow-tutorials.zip (link opens an external website in a new browser tab/window).
-EdiT random-example.yaml to put the following on the pod template.

metadata:
annotations:
sidecar.istio.io/inject: “false”

-Deploy the example:
Skubectl apply -f random-example.yaml

This example embeds the hyperparameters as arguments. Hyperparameters can be embedded in other ways (e.g. by using environment
variables) by using the template defined in the TrialTemplate, GoTemplate, and RawTemplate section of the yaml file. The template uses the Go
template format (link opens an external website in a new browser tfab/window).

This example randomly generates the following hyperparameters:

--1c - Leacning rate (type: double].
--num-layecs - Number of layers in the neucal netwock (type: integer).
--optimizer - Optimizer (type: categorical].

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/

Reference Architecture Page 94

-Check the experiment status:
S kubectl describe experiment random-example

ribe experiment random-example
random—exarple
irageadrin

onfiguration:
g/vlalpha3", "kind": "Experirent”, "retadata”: {"anmotations":{}, "labe controller

urce Versiom:
Self Link: f imageadmin/experiments,/ random-example

random
Max Failed Trial 3
Max Trial Cound 1z
Metrics Colle

Train-accuracy

ive Metric Name:

—-mum-layers
int

go:
LongBunming
Trial Template
Go Terplat
Bew Template: apil on: batch/wl

metadata:
{{-Trial}}

mtainers:
mame: {{.Trial}}
image: er.io/kubeflowkatib/mmet-mnis

Example 3: PyTorch
1. Download the Kubeflow tutorials zip file which contains sample files for all of the included Kubeflow tutorials.

2. Edit the YAML to point to put the following on the pod template.

metadata:D
annotations:
sidecarc.istio.io/inject: “false”

3. Deploy the example.

S kubectl apply -f pytorcch-example.yaml
-Go to the Katib page.
.Click the Menu button, and then select HP — Monitor.

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 95

.Click the experiment name, and then observe the trials running.

accuracy -Ir --momentum
0.989 0.044 0.894
0.989

0.850 -
0.088
0.800
0.087
-
0.750
0.986
0.700~
0.985 \
0.025 - o650
< ;
0.984 - \\
0.020 060Nl
0.083 S50
0,015 - \
0.983 0.014 0.524

FIGURE A22. Pytorch Job Experiment

-Check the experiment status.
S kubectl get experiment

-Use the following command to check the trials of the experiment.
S kubectl get trial

Sample Katib commands
To check experiment results via thekub ectl CLI.

e List experiments

S kubectl get experiment

o Check experiment result

S kubectl get experiment random-example -0 yaml

List trials

Skubectl get trials

Check trial detail

S kubectl get trials random-expeciment-241ggghm -o yaml

—

Reference Architecture Page 96

To check the status using the interface:

-Go to the Katib page.

.Click the Menu button, and then select HP — Monitor.

-Click the experiment name and observe the built experiment graph after all the trials have succeeded.

Argo workflows
Download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials.

This article provides the following two examples:

e Simple workflow

o Parallel execution workflow

Simple workflow

To complete the simple workflow:

-CreaTe and apply the Argo workflow in the profile namespace.

Bobtain acgo-hello-world. yaml from the zip file mentioned above.

S kubectl apply -f argo-hello-world.yaml
workflow.acgoproj.io/hello-world created

-Verify that the workflow was created:

S kubectl get wf

NAME AGE
hello-wocrld 41m
pacallelism-nested-dag 12d

.Verify that the related hello-world pod was created and is running.

S kubectl get pods hello-world
NAME READY STATUS RESTARTS AGE
hello-world 0/2 Completed O 49m

-Open the Argo interface by navigating fo:

http://<kubeflow_uel>/arqgo/
http://ezam-01.pecflab.hp.com:10053/?ns=imageadmin/argo/

-To remove the workflow:

S kubectl delete wf hello-world
workflow.acgoproj.io “hello-world” deleted

$ kubectl delete wf hello-world

workflow.argoproj.io "hello-world" de

Parallel execution workflow
To complete the parallel execution workflow:

-CreaTe and apply the nested Argo workflow in the profile namespace.
Wlobiain acgo-parallel-nested. yaml from the zip file mentioned above.

S kubectl apply -f argo-parallel-nested.yaml
workflow.argopreoj.io/pacallelism-nested-dag configured
-Verify that pods were created, as per the template (Observe the . yamlfil the template).

E—

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/tutorials/kubeflow/Tutorial_Argo_Workflows.html#v52_k8s-tutorial-argo-workflows__simple
https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/tutorials/kubeflow/Tutorial_Argo_Workflows.html#v52_k8s-tutorial-argo-workflows__parallel
http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/
http://docs.bluedata.com/52_k8s-tutorial-argo-workflows$parallel

Reference Architecture Page 97

-Open the Argo interface by navigating to:

http://<kubeflow_url>/argo/
http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/

ML metadata
Before beginning this tutorial, download the Kubeflow tutorials zip file which contains sample files for all of the included Kubeflow futorials.

-CreaTe a Jupyter notebook server with any of the default images.

-ConnecT o the created notebook server and upload the following notebook: demo-mlipynb.

~ Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload || Neww | &
[J0 | ~ W@/ kubeflow_tutorials_5.3 / notebooks MName & Last Modified File size
o seconds ago
[J & demo-mlipynb Running 2 hours ago 12.4 kB

FIGURE 63. Demo-ml

.Run the notebook step by step, and observe the result on the Pipelines — Artifacts page in the Kubeflow Ul.

= {7 Kubeflow (P imageadmin (owne) v =

Artifacts

«® Artifacts

Pipeline/Workspace T Name 1} Type URI Created at
- 1 DataSet path/to/data
MNIST-v1 2 SavedModel pathito/model/file 8/25/2021, 3:22:35 PM

FIGURE A23. Artifacts

http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/
https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip

Reference Architecture Page 98

-Click the name of each item to view detailed information. Click the Execution tab on the left and see the deftails.
= ff.‘ Kubeflow (P imageadmin (Qwner) ¥

Executions
": Pipelines

&

« Experiments

Type: Trainer

Artifacts

Properties
name state

> Executions My Execution COMPLETED
Custom Properties

B Archive P

Declared Inputs

B Documentation ©

ArtifactID Name Type URI

1 DataSet path/toidata
() GithubRepo &

Declared Qutputs

D Al Hub Samples © Artifact ID Name Type URI

2 MNIST-v1 SavedModel path/to/modelfile

FIGURE A24. Executions

Reference Architecture Page 99

APPENDIX B: HPE ML OPS KDAPP

Centos/Ubuntu

In the Applications screen, launch Centos/Ubuntu app with the required resources screen, launch Centos/Ubuntu app with the required
resources.

Dashboard Create KubeDirectfor
Users 2 Cluster Detail

MName* i
Project Repository centos

Description
Source Control
Model Registry Application” Cent0S 8.0 -
Training Enable DataTap [:I
A Mode Roles L
Model Serving
vanilla_centos
1

DataTaps Instances 1
FsMounts 1 CPU 5 C
Applications Memory (GB) 4
Notebooks GPU g
Kubeflow Dashboard Persistent Storage Size (GB) 0

Persistent Storage Class

4

Edit/Launch yaml m

FIGURE B1. Launching KDAPP CentOS

-ssh—keygen in webterm and copy id_rsa.pub.

Reference Architecture Page 100

-Exec into the centos pod and run ssh-keygen.

k8suserikd. 4dzrd-0:~
k8suserikdss-4dzrd-0:~

pub that was copied, and exit.

-ssh to the Access Poinfts.

Kubernetes Applications

KubeDirector ~ Kubectl ~ Service Endpoints Virtual Endpoints

Kubernetes Service Name Role Details KubeDirector Cluster Services Porfs Access Points
centos-vanilla-centos-zptfk-0 vanilla_centos KubeDirectorApp: centos ssH 22 ezam-01.perflabhp.com:10026 NodePort
D: centosgx

Name: CentOs 8.0

Ki-dashboard-import-longv 80 80 zam-0L perfla NodePort

livy-http hitp 8998 ezam-O1perflabhp.com:10023 NodePort

spark-ul-proxy hitp 80 ezam-01perflabhp com:10022 NodePort

sparkhs-svc http. 18480 ezam-O1perflabhp.com:10020 NodePort

sparkis-sve hitp 4440 ezam-OLperflabhpcom10021 NodePort
spark-thrift 2304 ezam-O1perflabhp.com10024

FIGURE B2. CentOS Access Points

MLflow

MLflow is an open-source platform to manage the machine learning lifecycle, including experimentation, reproducibility, deployment, and a
centfral model registry. For MLflow integration in the HPE Ezmeral Runtime details, see MLflow for Model Management. See MLflow

Configuration and Deployment for the process to execute one run of MLflow from tfraining fo deployment. The user can clone the MLflow
notebook used in this tutorial from https://github.com/pcaol1/miflow.git.

E—

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/mlflow_concepts.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/mlflow_configuration_and_deployment.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/mlflow_configuration_and_deployment.html
https://github.com/pcao11/mlflow.git

Reference Architecture Page 101

-GeneraTe and apply the MLflow Secret (See the HPE Ezmeral Container Platform 5.3 Documentation for the details).

k8suserfkdss-r9bk8-0:~5 vi mlflow-sc.yaml
k8suser(kdss-r9bk8-0:~5 cat mlflow-sc.yaml
apiVersion: vl

kind: Secret

stringData:
MLFLOW ARTIFACT ROOT: s3://hanshabucket #s3://mlflow
AWS ACCESS KEY ID: AKIAW2IT4GWHVDDWS25E #myusername
AWS SECRET ACCESS KEY: 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 #mypassword
#MLFLOW_BACKEND STORE: XX b,

#mysqgl://mlflowusr:Password”12@192.0.2.0:3306/mlflowdb
MLFLOW_S3_ENDPOINT URL: https://s3.us-east-2.amazonaws.com #https://s3.us-east-2.amazonaws.com
#MLFLOW_S3 ENDPOINT URL: https://hanshabucket.s3.us-east-2.amazonaws.com #https://s3.us-east-2.amazonaws.com

#http://myserver.example.com: 10007

#AWS_DEFAULT_REGION : us-east-2
metadata:

name: mlflow-sc

labels:

kubedirector.hpe.com/secretType: mlflow
type: Opadque
#podLabels:
#hpecp.hpe.com/dtap: "hadoop2"

k8suser(ikdss-r9bk8-0:~5 kubectl apply -f mlflow-sc.yaml
secret/mlflow-sc created
k8suser(ikdss-r9bk8-0:~

-CreaTe an MLflow App Instance by attaching the mliflow secret (See the HPE Ezmeral Container Platform 5.3 Documentation for the details).

Create KubeDirector

Edit your ¥aml and hit submit o launch app

pe.com/vlbetal"

FIGURE B3. Launching MLflow App Instance

E—

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/generate_mlflow_secret.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/attach_secret_and_launch_kubedirector_mlflow_app.html

Reference Architecture Page 102

-CreaTe a Training Application Instance. See the HPE Ezmeral Container Platform 5.3 Documentation for details (optional).

Create Training

 Cluster Detail
Name™ () | trepy
Descriptio
RunTime Image* ‘ ML Training Toolkit, with GPU support -
Enable DataTap D
[~ Node Roles)
[LoadBalancer
Instances (7) | 1
GUD
Memory (GBI) ¢
GFUD g
[~ RESTServer
Instances () | 1
UG |,
Memory (GB) (7) | 4
UG o
 controller
Instances (3) | 1
U
Memory (GB) _'2:. I3
BUD g
Edit/Launch yaml

FIGURE BA4. Create Training Cluster

-Launch and configure the Notebook (See the HPE Ezmeral Container Platform 5.3 Documentation for more details).

Create Notebook

Edit your Yaml and hit submit fo launch app

apiversion: “kubedirector.hpe.com/vibetal”
kind: "KubeDirectorCluster”

4 metadata:
S name: "nbmlflow’

6 namespace: "amdtenant2"

7 labels:

8 description: "

9

18

1

12 appCatalog: "local”

13 connections:

14 clusters:

15 - trepu

16 - mlflow

17 secrets:

18 - hpecp-kc-secret-d6@fs3e621bdb63f1b@faebsf7e88726
19 - hpecp-ext-auth-secret

20 - mlflou-sc]

21 roles:

22 -

23 id: "controller”

24 members: 1

25

26

=

28

29 "e"

31

33 com/gpu:

24 the application is based on hadoop? e.g. using StreamCapabilities interface, then change the below dtap Label to 'hadoop3', otherwise for most applications use the default 'hadoop2'"
35

36 #hpecp . hpe . com/dtap: "hadoop2”

Cancel

FIGURE B5. Create MLflow Notebook

—

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/optional_launch_training_toolkit_application.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/optional_launch_notebook_with_attachments.html

Reference Architecture Page 103

-Enable kubectl to run MLflow backend (mandatory). Set the experiment name, Train, and frack models.

Set your password (mandatory)

PASSWORD = "hpl23456" # use your password

Enable kubectl to run MLflow backend (mandatory)

%kubeRefresh --pwd $PASSWORD

kubeconfig set for user imageadmin

[3]: # This magic sets the envirommental variables required for mlflow in backend.
%loadMlflow

Backend configured

Set your experiment name

Magic function 'XSetexp' replaces the two Lines below
#mLflow.set_experiment('demoexp ")

#mLflow. set_tag('mlLflow.user’, 'chris")

%Setexp =--name demoexp

-Observe experiments, runs, metrics, parameters, dependency, and frained models in the MLflow UI.

m I (& Experiments Models

demoexp > Run a1d4346870cc46edadbb2e1049c50d3b ~

Date: 202 Source: L ipykernel_launcher.py User: imageadmin
Duration” 1.1s Status® FINISHED

~ Notes [

None

~ Parameters

Name Value

alpha 05

11_ratio 05

~ Metrics

Name Value

mae k2 0628

2l 0.127

rmse L2 0.822
~ Tags

Name Value Actions

No tags found

Add Tag

FIGURE B6. ML flow Experiment, Run

Reference Architecture

- Attifacts
v @ model © Full Path: s3: /a104346870cc46edadbb: facts/model/conda.yami
B MLmocel Size: 1508
B condayami .
) channels
mogelpk
Oy - defaults

conda-forge
dependencies.
- pythons3.7.3
- scikit-learn=e.23.1
- plp
- pip:

- mlflow

- cloudpickle==1.6.0
name: mlflow-env

FIGURE B7. Dependency and Trained Model

-RegisTer Model for MLflow (See the HPE Ezmeral Container Platform 5.3 Documentation for details).

Register Model

Label
Name™ (3 | miflowexample|

Description (3)

Model Store Type (7

‘ MLFlow Registry

s3:fhanshabucket/1/a1d4 34687 Occhdedasbb2el049c50d3b/artifacts/model

Model Artifact URL® ()

FIGURE B8. Register Model

Page 104

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/register_model_for_mlflow.html

Reference Architecture Page 105

-CreaTe an MLflow Model Serving (See the HPE Ezmeral Container Platform 5.3 Documentation for details).

Create Model Serving

Cluster Detail

Name® (7

Description (%

Madel Serving Engine® (7 ‘ ML Flow-Seldon

Select Model® . ‘ miflow
Resources
Instances (7 1
CPU (7 2

Memory (GB) () | 4

Edit/Launch yaml|

Ennau

FIGURE B8. ML flow Model Serving

-Copy Access Points and Auth Token.
Model Serving

Applications Ezmeral Serving Endpoints ~ MLflow Seldon Endpoints

Name Access Points

miflowserving http:flezam-01 perf 021,

-Making Prediction Calls (See the HPE Ezmeral Container Platform 5.3 Documentation for details).

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/deploy_mlflow_model_on_seldon_mlflow_server.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/making-prediction-calls.html

Reference Architecture Page 106

NVIDIA: TensorFlow (NGC)
-CreaTe an NVIDIA TensorFlow (NGC) App Instance.

1 HPE Ezmeral Container Platform

Bshbgard Create KubeDirector
Users 2 Cluster Detail
MName* nge
Project Repository
Description

Source Control
Model Registry Application” | NVIDIA TensorFlow(NGC) -
Training Enable DataTap D

Node Roles
Model Serving

tensorflow

DataTaps 1

Instances 1

1
FsMounts CPU

o

Applications Memary (GB) 32

Kubeflow Dashbeard

A
N
Py
N
MNotebooks cPU)
v

Edit/Launch yam

FIGURE B9. Launching NVIDIA TensorFlow (NGC) App Instance

-Login inside the pod to run TensorFlow jobs with GPU.

Reference Architecture

TensorFlow + Jupyter
-CreaTe a TensorFlow + Jupyter App Instance.

1 HPE Ezmeral Container Platform

Page 107

Dashboard Create KubeDirector
Users 2 Cluster Detail
Name®)
. . w2/ | tfnb
Project Repository "
Description (%)
Source Control)
Model Registry Application” (7 | TensorFlow + Jupyfer
Training Enable DataTap (7 D
) MNaode Roles
Model Serving
controller
1
DataTaps Instances 77) | 1
FsMounts 1 wup [
Applications Memory (GB)) 16‘
Notebooks cPU
IR
Kubeflow Dashboard
Edit/Launch yami

FIGURE B10. Launching TensorFlow + Jupyter App Instance

.Click the access points of the created App Instance.

Kubernetes Applications

KubeDirector ~ Kubect] Service Endpoints Virtual Endpoints

Kuberetes Service Name Role Details KubeDirector Cluster

centos-vanila-centos-zpfk-0 vanilla_centos KubeDirectorApp: centos

1D: centosdx
Name: Cent0S 8.0

it-dashboard-import-16nBy
—

sparicuprony

sparkhs-sve

sparkts-sve

Hnb-controller-9cg29-0 controller

Name: TensorFlow + Jupyter

FIGURE B11. Access Points of TensorFlow + Jupyter

Services

ssH

20
hito
hito
hitp

hito

sparicthrift

Jupyter Notebook

Access Points

ezam-01 perflab hp.com:10026

ezam-O1perfiabhpcom10023
ezam-Ol perflabhpcom:10022
ezam-01 perfiabhp.com10020
ezam-OLperfiabhpcom10021
ezam-01 perfiabhp.com10024

ezam-0L perflabhpcom10034

Submit

I (O OR

Senvice Type

NodePort

NodePort

NodePort

NodePort

NadePort

NodePort

NodePort

Reference Architecture

-Exec into the TensorFlow +Jupyter pod and run jupytec notebook list and copy the token.

k8suser

FIGURE B12. Copy the token

-PasTe the copied token and login to TensorFlow + Jupyter notebook.

HPE Ezmeral Container Platform X Jupyter Notebaok x |+

C AN

* Jupyter

Password or token: | «eccaciense.

Login

Token authentication is enabled

If no password has been configured, you need to apen the notebook server with its lagin token in
the URL, or paste it above. This requirement will be lifted if you enable a password

The command

jupyter notebock list
will show you the URLs of running servers with their tokens, which you can copy and paste into
your browser. For example

Currently running serve
http://localhost: 8888/ ?token=c8desefa... :: /Users/you/notebooks

of you can paste just the token value into the password field on this page

See the dac on how to enable a password in place of token authentication, if you
would like to aveid dealing with random tokens

Cookies are required for authenticated access to notebooks.

Setup a Password
You can also setup a password by entering your token and a new password on the fields belowr:

Token

New Password

Login and set new password

FIGURE B13. Login fo TensorFlow + Jupyter Notebook

Page 108

Reference Architecture Page 109

-Now launch the notebook and run TensorFlow with GPU

HPE Ezmersl Container Platform x‘ Home Page - Select or creste 3+ X Untitled - Jupyter Notebook x |+

C A Not secure | 10.209.18.1:10034/notebooks/Untitled.ipynbZkemel_name=python3

" Jupyter Untitled Last Checkpoint a minute ago (unsaved changes) A Logout
Fle Edt View Inset Cel Kemel Widgels Hebp Tsied| # | Python 3 O
2 432 B 2 v HRn B C W coe v [m

In [1]: import tensorflow as tf
len(tf.config.1ist_physical devices('GPU'))

out[1]: 1

ml:|

FIGURE B14. Python3 Notebook

APPENDIX C: INSTALL AND CONFIGURE HPE EZMERAL RUNTIME

Follow the steps as outlined to install and configure the HPE Ezmeral Runtime. This section assumes that all the prerequisites mentioned in the
earlier sections were followed. See the Standard Installation procedure.

https://docs.containerplatform.hpe.com/53/reference/deploying-the-platform/phase-3/step-1--cli/Standard_Installation.html

Reference Architecture

RESOURCES AND ADDITIONAL LINKS

HPE Reference Architectures, hpe.com/info/ra
HPE Servers, hpe.com/servers

HPE Storage, hpe.com/storage

HPE Networking, hpe.com/networking

HPE Technology Consulting Services, hpe.com/us/en/services/consulting.html

HPE Ezmeral Machine Learning Ops, https://buy.hpe.com/us/en/enterprise-solutions/artificial-intelligence-analytics/artificial-intelligence-
analytics/artificial-intelligence-analytics/hpe-ezmeral-machine-learning-ops/p/1011947349

Operationalization for the Machine Learning Lifecycle live demonstration,
https://hpedemoportal.api.exthpe.com/DemoPortal/api/DocContent/GetDocBy Token/26858daf-c14b-49f0-ae8f-60d3e7423e66

HPE Ezmeral ML Ops, https://assets.ext.hpe.com/is/content/hpedam/documents/a50000000-0999/a50000137/a50000137enw.pdf

Kubeflow Introduction, https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://vO-5.kubeflow.org/docs/use-cases/

Broadcom AlOps, https://www.broadcom.com/sw-tech-blogs/aiops-blog/what-is-prometheus#:~text=Prometheus%20is%20a%20time-
series%20streaming%20data%20tool.%20lt,make%20that%20data%20available?%20for%20processing%20and%20analysis

HPE Ezmeral Container Platform 5.3 Documentation, https://docs.containerplatform.hpe.com/53/index.html

To help us improve our documents, please provide feedback at hpe.com/contact/feedback.

© Copyright 2022- 2023 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change
without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty.
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. NVIDIA, the NVIDIA logo,

: are trademarks and/or registered frademarks of NVIDIA Corporation in the U.S. and other countries.. Microsoft and Windows are
trademarks of Microsoft Corporation in the United States and/or other countries. © 2012 Google Inc. All rights reserved. Google
Hewlett Packard and the Google Logo are registered trademarks of Google Inc. All third-party marks are property of their respective owners.

Enterprlse a50006296enw, version 1.0, May 2023

http://www.hpe.com/info/ra
http://www.hpe.com/servers
http://www.hpe.com/storage
http://www.hpe.com/networking
http://www.hpe.com/us/en/services/consulting.html
https://buy.hpe.com/us/en/enterprise-solutions/artificial-intelligence-analytics/artificial-intelligence-analytics/artificial-intelligence-analytics/hpe-ezmeral-machine-learning-ops/p/1011947349
https://buy.hpe.com/us/en/enterprise-solutions/artificial-intelligence-analytics/artificial-intelligence-analytics/artificial-intelligence-analytics/hpe-ezmeral-machine-learning-ops/p/1011947349
https://hpedemoportal.api.ext.hpe.com/DemoPortal/api/DocContent/GetDocByToken/26858daf-c14b-49f0-ae8f-60d3e7423e66
https://assets.ext.hpe.com/is/content/hpedam/documents/a50000000-0999/a50000137/a50000137enw.pdf
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://www.broadcom.com/sw-tech-blogs/aiops-blog/what-is-prometheus#:%7E:text=Prometheus%20is%20a%20time-series%20streaming%20data%20tool.%20It,make%20that%20data%20available%20for%20processing%20and%20analysis
https://www.broadcom.com/sw-tech-blogs/aiops-blog/what-is-prometheus#:%7E:text=Prometheus%20is%20a%20time-series%20streaming%20data%20tool.%20It,make%20that%20data%20available%20for%20processing%20and%20analysis
https://docs.containerplatform.hpe.com/53/index.html
http://www.hpe.com/contact/feedback

	Executive summary
	Solution overview
	Solution components
	HPE Ezmeral Runtime
	Key features

	Kubernetes features on HPE Ezmeral ML Ops
	Kubernetes architecture with HPE Ezmeral Runtime

	HPE Ezmeral ML Ops
	Kubeflow for Pipeline Management
	Spark within HPE Ezmeral Runtime

	Best practices
	HPE EPA Platform configuration for HPE Ezmeral Runtime
	HPE Apollo 2000 Gen10 Plus Compute Servers
	HPE Apollo 6500 Gen10 Plus GPU System

	HPE and NVIDIA GPUs
	HPE Intelligent System Tuning (IST)

	Storage
	Ephemeral Storage (Node Storage)
	Persistent Storage
	Tenant Storage for Local Data Access
	Operating system storage
	HPE Ezmeral Runtime storage recommendations

	Networking

	Kubeflow with HPE Ezmeral ML Ops
	Kubeflow conceptual overview
	Katib hyperparameter tuning
	Argo Workflow
	Istio Prometheus

	HPE Ezmeral ML Ops use cases
	Software components
	Hardware components
	Use case NYC taxi rides
	Persona: Kubernetes Administrator
	LDAP/AD Administrator (For Jupyter Notebook KDapp use)
	Persona: Kubernetes project administrator
	Persona: Kubernetes project member (Data Scientist)

	Use case on Pima Indian's diabetes prediction
	Model development (Part 1)
	Model development (Part 2)

	Ezmeral ML Ops - in action with use case (Spark operator)
	Spark operator with K8s
	Prerequisites
	System requirements
	AD/LDAP authentication requirements
	Preparing the environment

	Spark operator use case
	Model training from KubeDirector Notebook using Spark with Livy

	Ezmeral ML Ops – Experiment tracking with MLflow
	Prerequisite
	Use case workflow
	MLflow Server

	Monitoring
	Kubernetes administrator
	Kubernetes tenant/project administrator
	Istio and Prometheus
	Istio Prometheus use case

	Summary
	Appendix A: Kubeflow and tests of use cases
	KubeFlow components
	Kubeflow components use cases GitHub issue summarization - Training with Jupyter
	GitHub issue summarization – Serving with Seldon
	Training with TensorFlow (Financial series)
	Serving a TensorFlow model with KFServing (Financial series)
	Training a PyTorch model (PyTorch MNIST)
	Additional information

	Sample Pipeline in the pipelines interface
	Running a pipeline in Jupyter Notebook
	Katib Hyperparameter Tuning
	Sample Katib commands

	Argo workflows
	Simple workflow
	Parallel execution workflow

	ML metadata

	Appendix B: HPE ML Ops KDapp
	Centos/Ubuntu
	MLflow
	NVIDIA: TensorFlow (NGC)
	TensorFlow + Jupyter

	Appendix C: Install and configure HPE Ezmeral Runtime
	Resources and additional links

