
            Reference Architecture 

HPE Reference Architecture for HPE 
Ezmeral ML Ops on Kubernetes  
Providing DevOps Speed and Agility for Machine Learning  

 

 
 



Reference Architecture 

 

 

CONTENTS 
Executive summary .............................................................................................................................................................................................................................................................................................................. 4 
Solution overview ................................................................................................................................................................................................................................................................................................................... 4 
Solution components .......................................................................................................................................................................................................................................................................................................... 6 

HPE Ezmeral Runtime ................................................................................................................................................................................................................................................................................................ 6 
Kubernetes features on HPE Ezmeral ML Ops .................................................................................................................................................................................................................................... 8 
HPE Ezmeral ML Ops .................................................................................................................................................................................................................................................................................................. 9 

Best practices ......................................................................................................................................................................................................................................................................................................................... 11 
HPE EPA Platform configuration for HPE Ezmeral Runtime ............................................................................................................................................................................................... 11 
HPE and NVIDIA GPUs ........................................................................................................................................................................................................................................................................................... 12 
Storage ................................................................................................................................................................................................................................................................................................................................... 13 
Networking ......................................................................................................................................................................................................................................................................................................................... 14 

Kubeflow with HPE Ezmeral ML Ops ............................................................................................................................................................................................................................................................... 15 
HPE Ezmeral ML Ops use cases ........................................................................................................................................................................................................................................................................... 17 

Software components ............................................................................................................................................................................................................................................................................................... 17 
Hardware components ............................................................................................................................................................................................................................................................................................ 18 
Use case NYC taxi rides .......................................................................................................................................................................................................................................................................................... 18 
Use case on Pima Indian's diabetes prediction ................................................................................................................................................................................................................................. 34 

Ezmeral ML Ops - in action with use case (Spark operator) ....................................................................................................................................................................................................... 43 
Spark operator with K8s......................................................................................................................................................................................................................................................................................... 43 
Spark operator use case ......................................................................................................................................................................................................................................................................................... 45 
Model training from KubeDirector Notebook using Spark with Livy ............................................................................................................................................................................ 47 

Ezmeral ML Ops – Experiment tracking with MLflow ....................................................................................................................................................................................................................... 54 
Use case workflow ....................................................................................................................................................................................................................................................................................................... 54 

Monitoring ................................................................................................................................................................................................................................................................................................................................. 66 
Kubernetes administrator ..................................................................................................................................................................................................................................................................................... 67 
Kubernetes tenant/project administrator............................................................................................................................................................................................................................................... 68 
Istio and Prometheus ................................................................................................................................................................................................................................................................................................ 68 

Summary ..................................................................................................................................................................................................................................................................................................................................... 70 
Appendix A: Kubeflow and tests of use cases .......................................................................................................................................................................................................................................... 71 

Kubeflow components use cases GitHub issue summarization - Training with Jupyter ............................................................................................................................ 73 
GitHub issue summarization – Serving with Seldon .................................................................................................................................................................................................................... 77 
Training with TensorFlow (Financial series)........................................................................................................................................................................................................................................ 78 
Serving a TensorFlow model with KFServing (Financial series) ........................................................................................................................................................................................ 81 
Training a PyTorch model (PyTorch MNIST) .................................................................................................................................................................................................................................... 83 
Sample Pipeline in the pipelines interface ............................................................................................................................................................................................................................................. 84 
Running a pipeline in Jupyter Notebook ................................................................................................................................................................................................................................................ 87 
Katib Hyperparameter Tuning ......................................................................................................................................................................................................................................................................... 90 
Argo workflows ............................................................................................................................................................................................................................................................................................................... 96 



Reference Architecture 

 
 

ML metadata .................................................................................................................................................................................................................................................................................................................... 97 
Appendix B: HPE ML Ops KDapp ........................................................................................................................................................................................................................................................................ 99 

Centos/Ubuntu ............................................................................................................................................................................................................................................................................................................... 99 
MLflow ................................................................................................................................................................................................................................................................................................................................ 100 
NVIDIA: TensorFlow (NGC) ............................................................................................................................................................................................................................................................................. 106 
TensorFlow + Jupyter .......................................................................................................................................................................................................................................................................................... 107 

Appendix C: Install and configure HPE Ezmeral Runtime ......................................................................................................................................................................................................... 109 
Resources and additional links ........................................................................................................................................................................................................................................................................... 110 
 
 
 
 
 



Reference Architecture Page 4 

 

 

EXECUTIVE SUMMARY 
Enterprises across all industries are embarking on a hybrid cloud journey for the development and deployment of their data-driven analytics and 
AI/ML applications. The continuous integration/continuous deployment (CI/CD) workflows, collectively referred to as DevOps, have become 
ubiquitous for all software development today. On the machine learning front, data scientists still spend a significant amount of time and effort 
moving projects from development to production. Model versioning is still manual, making it hard to update models in production. Code sharing 
is manual; data is copied onto local storage leading to the variability of results between environments. There is also a lack of standardization on 
the tools and frameworks used, which makes it tedious and time-consuming to deploy models across all environments.  

HPE Ezmeral ML Ops includes the same capabilities and functionality as the HPE Ezmeral Runtime while also providing DevOps-like agility to 
enterprise machine learning. With HPE Ezmeral ML Ops, enterprises can implement CI/CD workflows and standardize their ML pipelines. The 
HPE Ezmeral ML Ops software platform supports every stage of the machine learning lifecycle — from supporting sandbox experimentation with 
the choice of ML/DL frameworks and integrating with model and code repositories to deploying and tracking models in production.  

HPE Ezmeral ML Ops gives data scientists and developers the ability to quickly and easily build and train machine learning models. It allows data 
scientists to manage and track models built on any platform and deploy them into a scalable and secure production environment. Using HPE 
Ezmeral ML Ops, data scientists can spin up containerized environments for distributed data processing, Machine Learning (ML), or Deep 
Learning (DL) in minutes rather than weeks. It provides data science teams the flexibility to run their ML/DL workloads either on-premises, in 
multiple public clouds, or a hybrid model and respond to dynamic business requirements in a variety of use cases.  

With HPE Ezmeral ML Ops, Hewlett Packard Enterprise is making it easier for organizations to deliver a flexible and secure multitenant 
architecture, with the agility, flexibility, and performance needed to address today’s evolving workload and application requirements. Its 
deployment on HPE hardware can be done using pre-tested and optimized HPE Apollo building blocks on-premises, as well as in hybrid IT 
architectures and a multi-cloud model. 

SOLUTION OVERVIEW 
HPE Ezmeral Runtime is a unified container software platform that is built on open-source Kubernetes and designed for both cloud-native 
applications and non-cloud-native applications running on any infrastructure either on-premises, in multiple public clouds, in a hybrid model, or 
at the edge. With HPE Ezmeral Runtime, container deployment and operations can be simplified at scale. HPE Ezmeral Runtime best practices 
and automation can help streamline operations and improve SLAs. Hewlett Packard Enterprise delivers highly automated playbooks for Day 0 
deployments combined with best practices and configuration automation to set up container HA, backup/restore, security validation, and 
monitoring to minimize manual overheads. HPE Ezmeral Container Platform includes KubeDirector—an open-source Kubernetes-based 
controller that can be used to deploy non-cloud-native apps. The HPE Ezmeral Runtime provides an App Store of curated, prebuilt images for a 
wide range of applications including machine learning (ML), analytics, IoT/edge, and CI/CD.  

In this Reference Architecture, we discuss HPE Ezmeral ML Ops on Kubernetes and its components including the HPE Ezmeral Runtime. This is 
a workload-optimized platform to serve the needs of DevOps teams, CI/CD workflow integration, application modernization, and hybrid cloud 
solutions for the enterprise. This solution provides a cloud-like experience to customers from edge to core to cloud.  

The HPE Apollo fit-for-purpose built server, storage, and networking hardware is the foundation for an infrastructure that provides both rapid 
deployment and scaling while delivering the highest levels of performance, quality, and availability. This solution also showcases how to 
modernize a legacy application using KubeDirector.  

The combination of HPE Ezmeral Runtime (with pre-integrated HPE Ezmeral Data Fabric), and HPE Apollo servers deliver a composable 
architecture that rapidly deploys containers supporting the latest application frameworks. Ultimately, this results in faster digital transformation 
for the business. With services from HPE Pointnext and HPE GreenLake, the customer decides whether to purchase hardware upfront or move to 
a pay-as-you-go consumption model.  

  



Reference Architecture Page 5 

 

 

Figure 1 shows the architecture of the HPE Ezmeral Runtime. 

 

FIGURE 1. HPE Ezmeral ML Ops Architecture 

HPE Ezmeral ML Ops brings the power of Kubernetes pods and Docker containers to the entire machine learning lifecycle to allow customers to 
build, train, deploy, and monitor machine learning (ML) and deep learning (DL) models. It supports sandbox development (notebooks), 
distributed training, and the deployment and monitoring of trained models in production. Project repository, source control, and model registry 
features allow seamless collaboration. 

Some of the specific features supplied at each stage of the machine learning lifecycle include: 

Table 1 shows the steps of the ML Lifecycle. 

TABLE 1. ML Lifecycle 

Steps Description Users 

Data Preparation • Select data 
• Preprocess the data by formatting, cleaning, and sampling it 
• Transform data by scaling, decomposing, and aggregating it 
• Use for fast data ingest and movement 

Data Analyst 

Model Building • Containerized sandbox environments 
• Choice of ML/DL tools, interface, and frameworks 
• Secure access to shared data 
• Data Scientists can now quickly spin up environments using their preferred data science tools 

Data Scientist, App 
Developers 

Model Training • Containerized, distributed ML/DL environment 
• Auto-scaling capabilities 
• Prepackaged images for Python, Spark, and TensorFlow 

Data Scientist, Data 
Engineer, DevOps Engineer 

Model Deployment • Support multiple runtime engines for handling scoring logic (e.g. Python, R, etc.) 
• Can deploy distributed ML/DL environments such as TensorFlow, Caffe2, H2O, BigDL, and SparkMLlib 
• REST endpoints with token-based authorization 

Data Scientist,  
DevOps Engineer 



Reference Architecture Page 6 

 

 

Steps Description Users 
 

• Autoscaling and load balancing 
• Integration with the model registry allows data scientists to track model versions and seamlessly update models 

 

The following are some additional features of ML Lifecycle in HPE Ezmeral ML Ops: 

• Model Monitoring 

– Track, measure, and report model performance 

– Save and inspect inputs and outputs for each scoring request 

– Third-party integrations track accuracy and interpretability 

• Collaboration 

– CI/CD workflows with code, model, and project repositories 

– Integration with GitHub and Bitbucket for project/code repository 

– Storing multiple models (multiple versions with metadata) for various runtime engines 

– A/B or Canary testing to validate the model 

– NFS based project repository that eases collaboration 

• Security and control 

– Secure multi-tenancy with integration to enterprise authentication mechanisms 

– Multitenancy and data isolation to ensure logical separation between each project, group, or department within the organization 

– Enterprise security and authentication mechanisms such as LDAP, Active Directory, and Kerberos 

– Share the same infrastructure and access the same data sources for AI/ML and Big Data analytics workloads 

• Hybrid deployment 

– On-premises, public cloud, or hybrid 

– Run on-premises on any infrastructure (including in multiple data centers) 

– Supports multiple public clouds (Amazon® Web Services, Google® Cloud Platform, or Microsoft® Azure) 

– Provides a hybrid model for effective utilization of resources and lower operating costs 

In addition to the new features and business benefits delivered through the HPE Ezmeral ML Ops Software, the underlying functionality 
delivered previously via the HPE Ezmeral Container Platform will continue to be part of the overall HPE Ezmeral Runtime framework and 
integrated with the new HPE Ezmeral Machine Learning Ops Software.  

This Reference Architecture describes our solution testing performed in February 2021. 

Document purpose: This Reference Architecture provides an overview of the deployment of HPE Ezmeral Runtime on servers – HPE Apollo 
6500, HPE Apollo 2000. Also, it provides deployment steps of Kubeflow for pipeline management and HPE Ezmeral Data Fabric (formerly 
‘MapR’) based Spark Operator.  

SOLUTION COMPONENTS 
HPE Ezmeral Runtime 
HPE Ezmeral Runtime installs as a software layer between the underlying server infrastructure and the Big Data distribution, AI/ML libraries, and 
applications. The use of containers is completely transparent, and HPE Ezmeral Runtime customers benefit from greater agility and bare-metal 
performance due to the lightweight nature of containers. They can leverage the flexibility of containers to simplify the development of DevOps, 
CI/CD pipelines, and applications across hybrid cloud deployments.  



Reference Architecture Page 7 

 

 

Key features 
• Multi-cluster Kubernetes management: Fast, easy deployment, management and monitoring of multiple clusters with either out-of-the-box 

or default configuration for networking, load balancing, and storage. This permits the user to run and manage different versions of 
Kubernetes simultaneously, and seamlessly supports the in-place upgrades. 

• Enterprise-ready persistent container storage: Fully managed, integrated, scale-out, and edge-ready persistent storage with the HPE 
Ezmeral Data Fabric. This Data Fabric, along with DataTap and FS Mount functionality provides connectivity to data without copying the 
data locally.  

• 100% open-source Cloud Native Computing Foundation (CNCF) Kubernetes: With innovations such as KubeDirector—an open-source 
Kubernetes-based controller to deploy non-cloud-native, stateful apps. HPE Ezmeral Runtime is a CNCF-certified Kubernetes distribution. 

• One-click provisioning: Pre-packaged App Store with curated, prebuilt images for a wide range of applications including machine learning 
(ML), analytics, IoT/edge, CI/CD, and other modern apps. The pre-bundled contents of the apps include Helm Charts, Operators, YAML 
configuration files, and KubeDirector scripts. 

• Simplified installation and upgrade workflows: This includes installation on bare metal, Virtual Machines, and cloud instances. 

• Flexible multi-cluster, multitenant control plane: Deploy multiple open-source K8s clusters and manage cloud K8s clusters (Example: GKE, 
EKS) from an HPE Ezmeral Runtime control plane, without vendor lock-in or modification to native K8s. 

• KubeDirector: The first and only K8s custom controller that deploys non-cloud native, monolithic distributed stateful applications (Example: 
CDH, HDP, Confluent, Bring your own app). 

• Streamlined access to K8s clusters and services for end-users: Gateway hosts isolate the HPE Ezmeral Runtime control plane and K8s 
hosts from the user network. This uniquely provides load balancing to multi-master K8s cluster(s) and routes to K8s services exposed via 
Node Ports and Ingress Controllers. 

• Bare-metal performance: HPE Ezmeral Runtime provides storage I/O optimizations to deliver data to applications without the penalties 
commonly associated with virtualization or containerization. The compute cores and RAM in each host are pooled and then partitioned into 
virtual resource groups based on tenant requirements. 

• Self-Service Environments: Users can get up and run quickly with HPE Ezmeral Runtime Elastic Plane functionality. New containerized 
environments are provisioned on-demand with just a few mouse clicks—whether they’re transient for development and testing, or long-
running for a production workload. Data scientists and analysts can now quickly respond to dynamic business requirements for a variety of 
use cases ranging from deep learning with AI Frameworks like TensorFlow to analytical SQL workloads running on Hadoop. Flexibility for 
Tools of Choice: The HPE Ezmeral Runtime offers pre-integrated container images, including many of the most common AI and Big Data 
tools, ready-to-run versions of major Hadoop distributions, such as Cloudera (CDH), Hortonworks (HDP), and MapR (CDP). Also includes 
recent versions of Spark standalone as well as Kafka and Cassandra. 

• Compute and Storage Separation: HPE Ezmeral Runtime disconnects analytical processing from data storage, giving users the ability to 
independently scale compute and storage based on the needs of the workloads.  

• Data Access from Any Storage: With HPE Ezmeral Runtime DataTap capability, users can access data from any shared storage system 
(including HDFS as well as NFS) or cloud storage (e.g. Amazon S3). It is unnecessary need to make multiple copies of data or move data 
before running an analysis. Sensitive data can stay in a secure storage system with enterprise-grade data governance without the costs and 
risks of creating and maintaining multiple copies or moving large-scale data. 

HPE Ezmeral Runtime goes beyond Hadoop and Spark support by leveraging the inherent infrastructure portability and flexibility of containers 
to support distributed AI for both ML and DL use cases. The separation of compute and storage for Big Data and ML/DL workloads is one of the 
key concepts behind this flexibility. Organizations can deploy multiple containerized compute clusters for different workflows (e.g. Spark, Kafka, or 
TensorFlow) while sharing access to a common data lake. This also enables hybrid and multi-cloud HPE Ezmeral Runtime deployments, with the 
ability to mix and match on- and/or off-premises compute and storage resources to suit each workload. Furthermore, compute resources can be 
quickly and easily scaled and optimized independently of data storage, thereby increasing flexibility and improving resource utilization while 
eliminating data duplication and reducing cost. 

  



Reference Architecture Page 8 

 

 

Kubernetes features on HPE Ezmeral ML Ops 
Data engineers, ML architects, and others can spin up containerized Kubernetes environments on scalable compute clusters with their choice of 
machine learning tools and frameworks for Big Data, AI, and/or ML use cases. Some of the key features of Kubernetes on HPE Ezmeral ML Ops 
include: 

• Software installation: either on physical or virtual hosts located in a hybrid environment. 

• Storage medium: a pre-integrated persistent container storage system known as the HPE Ezmeral Data Fabric. 

• DataTaps and FS Mounts: access to existing data sources, with no need to copy data back and forth. See DataTaps and FS Mounts. 

• Multitenant, multi-cluster management: use open-source Kubernetes orchestration to run a variety of databases, analytics, AI/ML, CI/CD 
pipeline, and other applications. 

• Big Data Kubernetes tenants: HPE Ezmeral Runtime can deploy applications with KubeDirector, or onboard Kubectl deployed applications, 
from the built-in Kubernetes Applications screen. 

• KubeDirector: KubeDirector custom resource comes pre-installed with the HPE Ezmeral Runtime. The set of applications that can be 
automatically launched into a cluster is found by accessing a Kubernetes tenant and then clicking the Applications tab. See the Applications 
article at this link. 

Kubernetes architecture with HPE Ezmeral Runtime 
This diagram depicts the physical Kubernetes cluster architecture within the HPE Ezmeral Runtime. For details on Kubernetes physical 
architecture, see the following link. 

 

FIGURE 2. Kubernetes physical architecture in HPE Ezmeral Runtime 

http://docs.bluedata.com/52_about-datataps
http://docs.bluedata.com/52_about-fs-mounts
https://docs.containerplatform.hpe.com/53/reference/kubernetes-applications/general/Applications_Overview.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/Kubernetes_Physical_Architecture.html


Reference Architecture Page 9 

 

 

HPE Ezmeral ML Ops 
With the HPE Ezmeral ML Ops solution, data science teams involved in the ML/DL model lifecycle can benefit from the industry’s most 
comprehensive operationalization and lifecycle management solution for enterprise AI. 

Figure 3 shows these features in the ML/DL lifecycle causal relationship. For further details, see HPE Ezmeral Container Platform 5.3 
Documentation.  

 

FIGURE 3. ML/DL lifecycle 

HPE Ezmeral ML Ops delivers the following AI/ML features in addition to the HPE Ezmeral Runtime functionality: 

• Leverage the power of containers to create a complex machine learning and deep learning stacks that include distributed TensorFlow, Apache 
Spark on Yarn with Kerberos, H2O, and Python ML and DL toolkits.  

• Spin-up distributed, scalable, machine learning, and deep learning training environments on-premises, public cloud, or in a hybrid model. 

• Support for a variety of programming languages and open-source tools designed to support even the most complex ML pipelines. For 
example, start with data pre-processing in Spark with Scala, followed by model development with TensorFlow on GPUs, and finally model 
deployment on CPUs with TensorFlow runtime. 

• The model registry stores models and versions created within HPE Ezmeral ML Ops, as well as those created using different tools/platforms. 

• Improves the reliability and reproducibility of machine learning projects in a shared project repository (GitHub). 

• Enables the deployment of models in production with secure, scalable, highly available endpoint deployment with out-of-the-box auto-scaling, 
and load balancing. 

• Enables out-of-the-box application images to be rapidly deployed in containerized environments – sandbox, distributed training, or serving 
(inferencing). 

• Enables the creation of custom application images with any combination of tools, library packages, and frameworks. 

For additional information, see HPE Ezmeral ML Ops. 

https://docs.containerplatform.hpe.com/53/reference/universal-concepts/About_HPE_Ezmeral_ML_Ops.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/About_HPE_Ezmeral_ML_Ops.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/About_HPE_Ezmeral_ML_Ops.html


Reference Architecture Page 10 

 

 

Kubeflow for Pipeline Management 
Kubeflow is an open-source project designed to make machine learning workflows on Kubernetes simple, portable, and scalable. Kubeflow is 
sponsored by Google and inspired by TensorFlow Extended, or TFX, the company’s internal machine learning platform. Originally intended to 
simply allow TensorFlow users to run training jobs on their Kubernetes clusters, the project now integrates a broad set of tools in support of 
many steps in an end-to-end machine learning process. 

Kubeflow includes components for: 

• Launching Jupyter Notebooks 

• Building ML Pipelines 

• Training Models 

• Tracking Experiment Metadata 

• Hyperparameter Tuning 

• Serving Models 

• Monitoring 

• Continuous integration and deployment for ML 

Spark within HPE Ezmeral Runtime  
Spark is a data processing framework that can rapidly perform processing tasks on massive data sets and can also allocate data processing tasks 
across multiple nodes. Spark can work in stand-alone mode or together with other distributed computing tools. These features are the key to Big 
Data and ML/DL, which require significant computing power to crunch through large data stores. It also helps the developers by getting rid of 
some of the programming burdens with an easy-to-use API that abstracts much of the monotonous work of distributed computing and big data 
processing.  

Spark has become one of the key big data distributed processing frameworks in the world. It can be deployed in a variety of ways and provides 
native bindings for the Java, Scala, Python, and R programming languages. In addition, it supports SQL, streaming data, machine learning, and 
graph processing.   

Another Spark advantage is increased performance using its in-memory data engine. It can run tasks up to several orders of magnitude faster 
than MapReduce in certain situations. Furthermore, it offers the developer-friendly Spark API which hides much of the complexity of a distributed 
processing engine behind simple method calls. 

The tutorial in the Spark Operator with K8s section describes how to set up and execute a Spark framework within the HPE Ezmeral Runtime 
which allows users to run Spark workloads on Kubernetes clusters. A user may instantiate the Spark framework instance on a dynamic cluster 
using the Spark operator. The Spark operator is a Kubernetes custom resource that is installed in a tenant namespace to support the  
on-demand deployment of Spark Executor pods. These pods are deleted once job execution completes. 

 

FIGURE 4. Spark Operator on Kubernetes 



Reference Architecture Page 11 

 

 

BEST PRACTICES 
Deploying the HPE Ezmeral Runtime on the HPE Elastic Platform for Analytics (EPA) platform provides great flexibility in deploying workloads 
and managing resource growth, by decoupling storage from compute. This section is intended to provide high-level guidance and best practices 
for deploying HPE Ezmeral Runtime, and HPE Ezmeral ML Ops solution with the HPE Elastic Platform for Analytics. 

HPE EPA Platform configuration for HPE Ezmeral Runtime 
HPE Ezmeral Runtime uses four distinct host types, as shown in Table 2, with the recommended HPE EPA server model. 

TABLE 2. HPE Ezmeral Runtime Host Types (Intel) 

Host Type HPE Server Model 

Primary Controller, Shadow Controller, Arbiter 
HPE Apollo 2000 
Needs 3 x XL170r for controller nodes with HA 

Kubernetes– Master/Worker 
HPE Apollo 2000 (4 x HPE ProLiant XL170r) 
Recommend minimum 3 x HPE ProLiant XL170r for Kubernetes Worker/Compute nodes 

Kubernetes – Compute with GPUs • HPE Apollo 2000 with up to 2 x HPE ProLiant XL190r each with 1 or 2 GPUs 
• HPE Apollo 6500 with HPE ProLiant XL270d with 4 or 8 GPUs  
• HPE ProLiant DL380 with up to 4 GPUs 

Kubernetes - Gateway  
HPE Apollo 2000 
Recommend 2 x HPE ProLiant XL170r 

 

TABLE 3. HPE Container Platform Host Types (AMD) 

Host Type HPE Server Model 

Primary Controller, Shadow Controller, Arbiter 
HPE Apollo 2000 Gen10 Plus 
Needs 3 x HPE XL225n Gen10 Plus for controller nodes with HA 

Kubernetes– Master/Worker 
4 x HPE ProLiant DL325 Gen10 Plus 
Recommend minimum 3 x HPE ProLiant DL385 Gen10 Plus for Kubernetes Worker/Compute nodes 

Kubernetes – Compute with GPUs HPE Apollo 6500 (4 x HPE ProLiant DL675d Gen10 Plus) 

Kubernetes - Gateway  
HPE Apollo 2000 Gen10 Plus 
Recommend 2 x HPE XL225n Gen10 Plus 

 

HPE Apollo 2000 Gen10 Plus Compute Servers 
The HPE Apollo 2000 Gen10 Plus System is a shared infrastructure chassis with flexible support for up to four (4) HPE ProLiant XL225n Gen10 
Plus servers (AMD) or up to four (4) HPE ProLiant XL220n Gen10 Plus servers (Intel®) or two (2) XL290n Gen10 Plus servers (Intel), helping 
increase rack space density. Server nodes can be serviced without impacting the operation of other nodes in the same chassis for increased 
server up-time. It delivers the flexibility to tailor the system to the precise needs of demanding high-performance computing (HPC) workloads 
with the right compute, flexible I/O, and storage options. The system can be deployed with a single server, leaving room to scale as customers' 
needs grow, bringing the power of supercomputing to data centers of any size. It is ideal for HPC applications in industry verticals like 
manufacturing, oil and gas, life sciences, and financial services. 

• HPE ProLiant XL170r Gen10 Server: For compute-intensive workloads, HPE ProLiant XL170r delivers four servers in a single 2U chassis. 
Each HPE ProLiant XL170r server is serviced individually without impacting the operation of other servers sharing the same chassis to 
provide increased server uptime.  

• HPE ProLiant XL225n Gen10 Plus Server: 1U Node Configure-to-order Server supports the full stack of 2nd generation AMD® EPYC™ 
7000 Series processors. 

For more information, see HPE Apollo 2000 servers. 

HPE Apollo 6500 Gen10 Plus GPU System 
Built for the exascale era, the HPE Apollo 6500 Gen10 Plus System accelerates performance with NVIDIA® HGX A100 Tensor Core GPUs and 
AMD Instinct™ MI100 with Infinity Fabric™ accelerators to take on some of the most complex HPC and AI workloads. This purpose-built platform 
provides enhanced performance with premier graphics processing units (GPU), fast GPU interconnect, high-bandwidth fabric, and configurable 

https://buy.hpe.com/us/en/servers/apollo-systems/apollo-2000-system/apollo-2000-system/hpe-apollo-2000-gen10-plus-system/p/1012684166


Reference Architecture Page 12 

 

 

GPU topology, providing rock-solid reliability, availability, and serviceability (RAS). Configure with single or dual processor options for a better 
balance of processor cores, memory, and I/O. Improve system flexibility with support for 4, 8, 10, or 16 GPUs and a broad selection of operating 
systems and options, all within a customized design to reduce costs, improve reliability, and provide leading serviceability. 

• HPE ProLiant XL675d Gen10 Plus: It is a dual-processor system for the NVIDIA HGX A100 8-GPU or AMD Instinct with 8 to 10 double-wide 
or 16 single-wide PCIe accelerators. 

For more detailed information, see HPE Apollo 6500 Gen10 Plus system.  

HPE and NVIDIA GPUs 
HPE ProLiant servers offer NVIDIA accelerators for high-performance computation for deep learning, high-performance computing (HPC) 
workloads, or graphics. The NVIDIA accelerators for HPE ProLiant servers seamlessly integrate GPU computing with select HPE server families. 
Designed for power-efficient, high-performance supercomputing, NVIDIA accelerators deliver dramatically higher application acceleration than a 
CPU-only approach for a range of deep learning, scientific, and commercial applications. The thousands of NVIDIA CUDA® cores of each 
accelerator allow it to divide large computing or graphics tasks into thousands of smaller tasks that can be run concurrently, thus enabling much 
faster simulations and improved graphics fidelity for extremely demanding 3D models. 

For more detailed information, see HPE AI and deep learning.  

HPE Intelligent System Tuning (IST) 
Available in HPE ProLiant Gen10 servers, HPE Intelligent System Tuning is a new set of revolutionary capabilities that deliver higher levels of 
performance, agility, and control to the server environment. With these groundbreaking new features, we can: 

• Dynamically tune the servers’ performance to match the needs of each workload  

• Drive real cost savings  

• Radically improve server performance 

HPE ProLiant Gen10 Servers offer a UEFI configuration option to help customers tune their BIOS settings by using the known workload-based 
tuning profiles developed by the HPE performance engineering team. The default BIOS settings on HPE servers provide a balance between 
performance and power efficiency. For workloads running on the HPE ProLiant XL190r Gen10 and HPE Apollo 6500 servers with GPUs, the 
recommended workload profile is Graphic Processing which disables power management and virtualization to optimize the bandwidth between 
I/O and memory. 

For more information about how to tune an HPE ProLiant Gen10 server using the workload profiles, refer to the UEFI workload-based 
Performance Tuning Guide for HPE ProLiant Gen10 servers. 

TABLE 4. HPE Ezmeral Runtime host CPU and memory recommendations (Intel) 

Host Type Deployment Size Memory Processor 

Ezmeral - Controller, Shadow Controller, Arbiter 
  

Starter 
Medium 

192 GB 
384-768 GB 

2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz 
2 x Intel® Xeon® Gold 6242 - 16C 2.8 GHz 

K8s – Master/Compute 
 

Starter 
Medium 

192 GB 
384-768 GB 

2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz 
2 x Intel® Xeon® Gold 6226 - 12C 2.7 GHz 

K8s – GPU 
 
 

Starter 
Medium 
Large 

384 GB 
384-768 GB 
384-768 GB 

2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz 
2 x Intel® Xeon® Gold 6226 - 12C 2.7 GHz 
2 x Intel® Xeon® Gold 6242 - 16C 2.8 GHz 

K8s – Gateway All 192 GB 2 x Intel® Xeon® Gold 5215 - 10C 2.5 GHz 

 

TABLE 5 HPE Ezmeral Runtime host CPU and memory recommendations (AMD) 

Host Type Deployment Size Memory Processor 

Ezmeral - Controller, Shadow Controller, Arbiter  

Starter 
Medium 

192 GB 
384-768 GB 

AMD EPYC 7742 - 64C 2.25GHz 
AMD EPYC 7742 - 64C 2.25GHz 

https://buy.hpe.com/us/en/servers/apollo-systems/apollo-6500-system/apollo-6500-system/hpe-apollo-6500-gen10-plus-system/p/1013092236
https://www.hpe.com/us/en/solutions/artificial-intelligence.html
https://support.hpe.com/hpsc/doc/public/display?docId=a00018313en_us


Reference Architecture Page 13 

 

 

Host Type Deployment Size Memory Processor 

K8s – Master/Compute 
 

Starter 
Medium 

192 GB 
384-768 GB 

AMD EPYC 7262 - 8C 3.2GHz  
AMD EPYC 7262 - 8C 3.2GHz 

K8s – GPU 
 
 

Starter 
Medium 
Large 

384 GB 
384-768 GB 
384-768 GB 

AMD EPYC 7542 - 32C 2.9GHz 
AMD EPYC 7542 - 32C 2.9GHz 
AMD EPYC 7542 - 32C 2.9GHz 

K8s – Gateway All 192 GB AMD EPYC 7742 - 64C 2.25GHz 

 

To assist in sizing an HPE Ezmeral Runtime cluster, Hewlett Packard Enterprise has developed a sizing tool. 

NOTE 
HPE Apollo Gen10 Plus systems support a variety of flexible memory configurations. But for optimal performance, it is recommended to balance 
the total memory capacity across all installed processors and make use of all six memory channels per CPU with up to two DIMM slots per 
channel.  

Storage  
A typical Kubernetes environment may have pods frequently coming and going. Large Kubernetes environments, such as a public cloud, may 
handle pools of systems where new hosts are added to support pod and cluster placement. In the HPE Ezmeral Runtime, a Data Fabric cluster is 
a Kubernetes Custom Resource that functions as a storage cluster providing access to PVCs, tenant storage, shares, and other storage needs. In 
a Data Fabric cluster: 

• The hosts (called nodes) commit considerable disk resources that may include NVMe and enterprise-class SSDs 

• The Data Fabric cluster can be deployed on a small number of nodes 

• Unlike a typical k8s environment, pods are not deleted frequently 

• The Data Fabric cluster must account for host resource profiles to guarantee core pod availability 

HPE Ezmeral Runtime includes native support for HPE Ezmeral Data Fabric. This automates many manual steps and allows the creation of Data 
Fabric clusters like that used for creating Compute Kubernetes clusters (see Creating a New Data Fabric Cluster and Creating a New Kubernetes 
Cluster). Each Data Fabric cluster resides on nodes. See Kubernetes Worker Installation Overview and Kubernetes Data Fabric Node Installation 
Overview. 

Ephemeral Storage (Node Storage) 
Ephemeral Storage is built from the local storage in each host and is used for the disk volumes that back the local storage for each virtual node. 
Using SEDs (Self-Encrypting Drives) will ensure that any data written to node storage is encrypted on write and decrypted on read by the OS. A 
tenant can optionally be assigned a quota for how much storage the nodes in that tenant can consume. 

 

FIGURE 5. Storage 

Virtual nodes/containers running on public cloud VMs (such as AWS EC2) utilize storage within the instance (such as AWS Elastic Block Storage, 
or EBS) as node storage. 

https://solutionsizers.ext.hpe.com/EPASizer/
https://docs.containerplatform.hpe.com/53/reference/hpe-ezmeral-data-fabric-admini/Creating_a_New_Data_Fabric_Cluster.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/clusters/Creating_a_New_Kubernetes_Cluster.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/clusters/Creating_a_New_Kubernetes_Cluster.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/kubernetes-hosts/installing-kubernetes-hosts/Kubernetes_Worker_Installation_Overview.html
https://docs.containerplatform.hpe.com/52/reference/kubernetes/kubernetes-administrator/kubernetes-hosts/installing-kubernetes-hosts/Kubernetes_Data_Fabric_Node_Installation_Overview.html
https://docs.containerplatform.hpe.com/52/reference/kubernetes/kubernetes-administrator/kubernetes-hosts/installing-kubernetes-hosts/Kubernetes_Data_Fabric_Node_Installation_Overview.html


Reference Architecture Page 14 

 

 

Persistent Storage 
Deploying a persistent data fabric is supported on the local disks within the hosts. This local storage can serve as either HDFS storage or as 
persistent volumes for Kubernetes clusters. Persistent volumes for Kubernetes stateful clusters are seamlessly available either from the native 
persistent data fabric or Nimble Storage using the storage interface driver (CSI) that is deployed during cluster creation. 

Tenant Storage for Local Data Access 
HPE Ezmeral Runtime can deploy a Data Fabric (MapR) file system on local disks for Tenant Storage within the servers running the K8s services. 
The DataTap interface then surfaces the physical locations of the Tenant Storage data blocks to the containers that make up the virtual cluster. 
This allows the Big Data task scheduling software running within the containers to route Big Data tasks to the containers running on the physical 
servers where copies of the required data blocks reside. This behavior mimics bare-metal Big Data deployments, thereby preserving the 
performance advantages of data locality without losing the flexibility and agility of a container-based virtualized compute platform. It also allows 
Big Data datasets to persist beyond the lifespan of a given Big Data cluster.  

Operating system storage 
For all host types, the recommended storage for the operating system is two 960 GB SSDs in a RAID 1 configuration. 

HPE Ezmeral Runtime storage recommendations 
Table 4 lists the recommended minimum storage configuration for each host type. 

TABLE 5. Storage recommendations for HPE ProLiant XL170r, HPE ProLiant XL190r, and HPE ProLiant XL270d 

Host Type K8s – Storage Type Storage Recommendation 

Ezmeral – Controller, Shadow Controller, Arbiter 
  

OS 
Ephemeral Storage 
Local Data Fabric 

2 x 960 GB SSD configured as RAID 1 
3 x 6.4 TB mixed-use SSD.  
0-1 x 2 TB SATA 7.2 SFF HDD. 

K8s – Master/ Compute 
 
 

OS 
Ephemeral Storage 
Local Data Fabric 

2x 960 GB SSD configured as RAID 1 
3 x 6.4 TB mixed-use SSD. 
1 x 2 TB SATA 7.2 SFF HDD. 

K8s – Gateway OS 2 x 960 GB SSD configured as RAID 1 

 

NOTE 
The HPE ProLiant XL170r and HPE ProLiant XL190r have six drive bays. Two are used for the OS drives and four are available for node storage 
and local tenant storage. For additional high availability, it is recommended that the node storage disks be configured as RAID 5. Choose the 
appropriate size and number of disks based on node storage and local tenant storage space requirements.  

Networking 
HPE Ezmeral Runtime operates on two networks, as shown in Figure 6 below. 

The two networks are laid out as follows: 

• Network for the Controller, Worker, and Gateway hosts: This network must be both routable and part of the organization’s network that is 
managed by that organization’s IT department. 

  



Reference Architecture Page 15 

 

 

• Network for virtual nodes (containers): HPE Ezmeral Runtime creates and manages this network, which can be either public (routable) or 
private (non-routable). For Kubernetes, Canal is used as the Container Network (CN) Network Provider. The container network is typically 
private (non-routable) instead of public (routable). See detailed description of Public (Routable) Virtual Node Network and Private (Non-
Routable) Virtual Node Network. 

 

FIGURE 6. Networking layout 

We recommend deploying 25GB Ethernet adapters on all the hosts. Table 6 shows the recommended networking hardware for the clusters. 

TABLE 6. HPE Ezmeral Runtime networking recommendations 

Host Type Network Recommendation  

All host types HPE Eth 10/25GB 2P 640FLR-SFP28 Ethernet Adapter   

 

KUBEFLOW WITH HPE EZMERAL ML OPS  
Kubeflow conceptual overview 
HPE Ezmeral Machine Learning Ops (HPE Ezmeral ML Ops) 5.3 upgraded to Kubeflow version 1.2. 

Kubeflow is an open-source platform that makes the deployment of machine learning workflows in Kubernetes simple, portable, and scalable. 
Kubeflow deploys a suite of machine learning (ML) applications to Kubernetes that multiple users can securely access.  

Kubeflow uses the Istio Gateway and LDAP authentication with the Dex authentication service to authenticate and authorize user access. Each 
user is assigned a profile based on a Kubernetes namespace. The profile provides an isolated view of Kubeflow for each user.  

A Kubernetes administrator can install Kubeflow in environments where the computer network can access the internet, as well as in air-gapped 
environments where the network is isolated from outside networks. 

At a high level, the execution of a pipeline proceeds as follows: 

• Python SDK: Language use in the creation of components or pipelines using the Kubeflow Pipelines. 

• DSL Compiler: Convert the pipeline’s Python code into a static configuration (YAML). 

• Pipeline Service: Call during the creation of a pipeline running from the static configuration (YAML). 

https://docs.containerplatform.hpe.com/53/reference/universal-concepts/Networks_and_Subnets.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/Networks_and_Subnets.html
https://docs.containerplatform.hpe.com/53/reference/universal-concepts/Networks_and_Subnets.html


Reference Architecture Page 16 

 

 

• Kubernetes Resources: Allocate when Pipeline Service calls the Kubernetes API server to create the necessary resources (CRDs) to run the 
pipeline. 

• Orchestration Controllers: A set of orchestration controllers execute the containers needed to complete the pipeline. An example controller is 
the Argo Workflow (demonstrated below) controller, which orchestrates task-driven workflows. 

• Artifact Storage: The Pods store two kinds of data: 

– Metadata: Experiments, jobs, pipeline runs, and single scalar metrics. Metric data is aggregated to sort and filter. Kubeflow Pipelines stores 
the metadata in a MySQL database. 

– Artifacts: Pipeline packages, views, and large-scale metrics (time series). Use large-scale metrics to debug a pipeline run or investigate an 
individual run’s performance. Kubeflow Pipelines stores the artifacts in an artifact store like a Minio server or Cloud Storage. 

• The MySQL database and the Minio server are both backed by the Kubernetes Persistent Volume subsystem. 

• Persistence Agent and ML Metadata: The Pipeline Persistence Agent (PPA) watches the Kubernetes resources created by the Pipeline 
Service and persists the state of these resources in the ML Metadata Service. The PPA records the set of containers along with their inputs 
and outputs.  

• Pipeline Web Server: The Pipeline web server gathers data from various services to display relevant views: the list of pipelines currently 
running, the history of pipeline execution, the list of data artifacts, debugging information about individual pipeline runs, execution status of 
the individual pipeline runs. 

 

FIGURE 7. Kubeflow is a platform for components of ML systems on Kubernetes 

Katib hyperparameter tuning 
Katib is a Kubernetes-based system for hyperparameter tuning and neural architecture search. Katib supports many ML frameworks, including 
TensorFlow, MXNet, PyTorch, XGBoost, and others. It can be used to submit experiments and monitor results. 

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/argoproj/argo
https://docs.minio.io/
https://cloud.google.com/storage/docs/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes


Reference Architecture Page 17 

 

 

Argo Workflow 
Argo Workflows is an open-source container-native workflow engine for orchestrating parallel jobs on Kubernetes. Argo Workflows is 
implemented as a Kubernetes CRD (Custom Resource Definition). Argo Workflows can run on any Kubernetes cluster within the HPE Ezmeral 
Runtime and orchestrate highly parallel jobs on Kubernetes. 

Istio Prometheus 
Prometheus is an open-source monitoring system and time series database. Prometheus can be used with Istio to record metrics that track the 
health of Istio and applications within the service mesh. Metrics can be visualized metrics using tools like Grafana and Kiali. The HPE Ezmeral 
Runtime supports the deployment of Prometheus 

HPE EZMERAL ML OPS USE CASES 
Much like pre-DevOps software development, data science organizations still spend a significant amount of time and effort moving projects from 
development to production. Model version control and code sharing are manual, and there is a lack of standardization on tools and frameworks 
thus making it tedious and time-consuming to productize machine learning models. 

HPE Ezmeral Machine Learning Ops (HPE Ezmeral ML Ops) extends the capabilities of the platform and brings DevOps-like agility to enterprise 
machine learning. With the HPE Ezmeral ML Ops, enterprises can implement DevOps processes to standardize their ML workflows. 

HPE Ezmeral ML Ops provides data science teams with a platform for their end-to-end data science needs with the flexibility to run their 
machine learning or deep learning (DL) workloads on-premises, in multiple public clouds, or in a hybrid model and respond to dynamic business 
requirements in a variety of use cases. 

To complete the use case using the default datasets, 100GB of space will be required. 

NOTE 
The examples and documentation provided in this section are meant to supplement, not replace the HPE Ezmeral Runtime manuals.  

Software components 
This section describes the software versions utilized in the solution as well as notes any special installation or configuration requirements.  

Table 7 lists the specific versions of the software used in this solution. 

TABLE 7. Software Versions 

Component Versions 

HPE Ezmeral Runtime 5.3.1 

CentOS CentOS Linux release 7.7.1908  
Kernel 3.10.0-1062.el7.x86_64 

389 Directory Server 1.15.1-37 

 

Active Directory/LDAP: HPE Ezmeral ML Ops requires Active Directory (AD)/LDAP user authentication and supports the member of the 
attribute. The use cases use the following AD/LDAP users which can be substituted with existing LDAP users. 

TABLE 8. AD/LDAP users 

Projects User Member Of Role 

ML Ops/Kubeflow/Spark Fraudadmin Fraud Admin 

ML Ops/Kubeflow/Spark fraudanalyst Fraud Member 

ML Ops/Kubeflow/Spark imageadmin Image Admin 

ML Ops/Kubeflow/Spark imageanalyst Image Member 

 

  



Reference Architecture Page 18 

 

 

Hardware components 
The cluster was configured with AD/LDAP authentication, and platform high availability as shown in Figure 8. 

 

FIGURE 8. HPE Ezmeral ML Ops cluster 

A complete list of the hardware components and service configuration is listed in Table 9. This is an example of how an HPE Ezmeral Runtime 
cluster could be deployed. The number of servers and types of servers will vary based on the workload. 

TABLE 9. Hardware details 

Qty Host Service Server Type GPU CPU Cores Memory OS 
Storage 

Node 
Storage 

Tenant 
Storage 

K8s/EPIC 
Containers 

  HPE Ezmeral Runtime Cluster        

3 Ezmeral 
Controller HPE ProLiant XL225n Gen10 Plus 0 8 128 GB 1.2 TB 1.2 TB None N 

1 Ezmeral 
Gateway HPE ProLiant XL225n Gen10 Plus 0 8 128 GB 1.2 TB None None N 

1 K8s Master/ 
Compute HPE ProLiant DL325 Gen10 Plus 0 32 256 GB 1.2 TB 1.2 TB None Y 

2 K8s Compute 
GPU HPE ProLiant XL675d Gen10 Plus 4 2 x 32 256 GB 1.2 TB 1.2 TB None Y 

1 K8s Compute HPE ProLiant DL385 Gen10 Plus 0 2 x 32 256 GB 1.2 TB 1.2 TB None Y 

 

Qty Host Service Server Type CPU Cores Memory OS Storage NFS Storage 

 Supporting Services      

1 MIT Kerberos 
LDAP 389 Directory 
Server  
NTP Time Service 
DNS Name Server  
NFS Storage 

HPE ProLiant DL360 
Gen10 

24 196 GB 1.2 TB 10 TB 

 

Use case NYC taxi rides 
The use case provided demonstrates how HPE ML Ops provides an end-to-end solution for the complete lifecycle to build, train, deploy, and 
monitor ML and DL models in multitenant enterprise environments. The use case demonstrates the NYC taxi ride prediction using TensorFlow. 



Reference Architecture Page 19 

 

 

The dataset contains a sample of approximately 375,000 NYC taxi rides from January-June 2019. Pickup and drop-off locations are specified as 
location ID numbers. 

Sample data can be found at https://github.com/bluedatainc/solutions/tree/master/MLOps/examples/NYCTaxi/Taxi Datasets. 

NOTE 
The examples and documentation provided in this section are meant to supplement, not replace the manuals.  

The AI/ML workflow allows the user to build, train, and deploy a model and then send API requests to that model to make predictions. This 
workflow consists of three high-level steps that must be performed by users with different roles in the following order: 

• Kubernetes Administrator 

• LDAP/AD Administrator (For Jupyter Notebook KDapp use) 

• Project Administrator 

• Project Member (Data Scientist) 

Persona: Kubernetes Administrator 
 Verify that HPE Ezmeral Runtime is licensed for at least the number of CPU cores that will be used for the new Kubernetes cluster. HPE 

Ezmeral ML Ops requires a separate license for each of the CPU cores that will be used in AI/ML projects. Open the system settings screen, 
and then select the License tab to verify the number of CPU cores licensed for HPE Ezmeral ML Ops as shown in Figure 9. 

 

FIGURE 9. License Summary 

  

https://github.com/bluedatainc/solutions/tree/master/MLOps/examples/NYCTaxi/Taxi%20Datasets
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__step1
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__ldap-ad-admin
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__step2
https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__step3


Reference Architecture Page 20 

 

 

 Configure LDAP/AD authentication, If required. 

 

FIGURE 10. User Authentication 

  



Reference Architecture Page 21 

 

 

 Create a Kubernetes cluster. Be sure to provide LDAP server information in Step 2: Authentication screen; LDAP must be configured to run 
HPE Ezmeral ML Ops in a Kubernetes cluster.  

 

FIGURE 11. Kubernetes cluster creation 

 Assign at least one user to be a Kubernetes Administrator for the Kubernetes cluster just created. 

 

FIGURE 12. Admin Assignment to K8s cluster 

 Execute the following commands on the Kubernetes cluster master hosts to create LDAP/AD secret labels before creating tenants: 

kubectl config set-context --current --namespace=hpecp 
kubectl label secrets hpecp-ext-auth-secret "kubernetes.hpe.com/resource-tenant-visibility"="True" 

 

 
 
  



Reference Architecture Page 22 

 

 

 Create a new Kubernetes AI/ML project, being sure to: 

a. Check the AI/ML Project checkbox. 

 

FIGURE 13. Tenant Creation 

b. Enter the external LDAP/AD user group in the External Authentication tab. 

 

FIGURE 14. External Authentication 



Reference Architecture Page 23 

 

 

 Assign at least one user to be a Kubernetes Project Administrator for the newly created project. 

 

FIGURE 15. Admin Assignment to the tenant 

LDAP/AD Administrator (For Jupyter Notebook KDapp use) 
If the environment will include the ability to use the Jupyter Notebook KubeDirector application (KDapp), LDAP server group settings must be 
changed to include all members of the group. For details, see HPE Ezmeral Container Platform 5.3 Documentation. 

Persona: Kubernetes project administrator 
 Assign at least one user to the new project. 

 

FIGURE 16. Member assignment to the tenant 

NOTE 
All AI/ML project users (Project Members and Project Administrators) must be LDAP/AD users. They cannot be authenticated using local 
authentication. 

  

https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html#v52_k8s-getting-started-with-ai-and-ml-in-kubernetes__ldap-ad-admin


Reference Architecture Page 24 

 

 

 Configure one or more global source control configurations. 

 

FIGURE 17. Global Source Control Configurations 

Persona: Kubernetes project member (Data Scientist) 
 Log out of the web interface, and then log back in as the user that was created or assigned in step 1 of the Kubernetes Administrator 

workflow described above.  



Reference Architecture Page 25 

 

 

 Configure at least one individual source control repository. Be sure to copy the name of the secret created for this source control. 

 

FIGURE 18. Individual Source Control Configuration 

  



Reference Architecture Page 26 

 

 

 Access the Kubernetes Training screen, and then onboard the necessary training applications. 

 

FIGURE 19. Training Cluster Creation 

  



Reference Architecture Page 27 

 

 

 Access the Kubernetes Notebooks screen, and then launch the notebook application. Also, attach the training cluster. 

 

FIGURE 20. Notebook Cluster Creation 

 Once the notebook status appears as configured, it is possible to view the notebook applications and access the application endpoints. 

 Select the Jupyterlab endpoint from the Notebook Endpoints tab. 

 

FIGURE 21. Accessing Jupyterlab 

  



Reference Architecture Page 28 

 

 

 Log into Jupyterlab using AD/LDAP credentials, and then launch a Python 3 notebook. 

 

FIGURE 22. Sign in to Jupyterlab 

 Enter the ‘%kubeRefresh’ magic in the Python cell and provide the logged-in member’s password when prompted. Kubectl commands can 
now be entered from the notebook. 

 

 Training dataset to prepare the model. See the HPE Ezmeral Container Platform 5.3 documentation for Notebook Magic Functions. 

#%%mltraining 
print("Importing libraries") 
import pandas as pd 
import numpy as np 
from scipy import stats 
import math 
import os 
import datetime 
import xgboost as xgb 
import pickle 
 
import matplotlib.pyplot as plt 
 
# Start time  
print("Start time: ", datetime.datetime.now()) 
 
# Project repo path function 
def ProjectRepo(path): 
    ProjectRepo = "/bd-fs-mnt/project_repo" 
    return str(ProjectRepo + '/' + path) 
 
 
print("Reading in data") 
# Reading in dataset table  
dbName = "pqyellowtaxi" 
df = pd.read_csv(ProjectRepo('/data/demodata.csv')) 
 
# Reading in latitude/longitude coordinate lookup table  

http://docs.bluedata.com/52_k8s-kubernetes-notebook-magic-functions


Reference Architecture Page 29 

 

 

lookupDbName = "pqlookup" 
dflook = pd.read_csv(ProjectRepo('/data/lookup-ipyheader.csv')) 
print("Done reading in data") 
 
 
# merging dataset and lookup tables on latitudes/coordinates 
df = pd.merge(df, dflook[[lookupDbName + '.location_i', lookupDbName + '.long', lookupDbName + '.lat']], 
how='left', left_on=dbName + '.pulocationid', right_on=lookupDbName + '.location_i') 
df.rename(columns = {(lookupDbName + '.long'):(dbName + '.startstationlongitude')}, inplace = True) 
df.rename(columns = {(lookupDbName + '.lat'):(dbName + '.startstationlatitude')}, inplace = True) 
df = pd.merge(df, dflook[[lookupDbName + '.location_i', lookupDbName + '.long', lookupDbName + '.lat']], 
how='left', left_on=dbName + '.dolocationid', right_on=lookupDbName + '.location_i') 
df.rename(columns = {(lookupDbName + '.long'):(dbName + '.endstationlongitude')}, inplace = True) 
df.rename(columns = {(lookupDbName + '.lat'):(dbName + '.endstationlatitude')}, inplace = True) 
 
 
def fullName(colName): 
  return dbName + '.' + colName 
 
# convert string to datetime 
df[fullName('tpep_pickup_datetime')] = pd.to_datetime(df[fullName('tpep_pickup_datetime')]) 
df[fullName('tpep_dropoff_datetime')] = pd.to_datetime(df[fullName('tpep_dropoff_datetime')]) 
df[fullName('duration')] = (df[fullName("tpep_dropoff_datetime")] - 
df[fullName("tpep_pickup_datetime")]).dt.total_seconds() 
 
# feature engineering 
df[fullName("weekday")] = (df[fullName('tpep_pickup_datetime')].dt.dayofweek < 5).astype(float) 
df[fullName("hour")] = df[fullName('tpep_pickup_datetime')].dt.hour 
df[fullName("work")] = (df[fullName('weekday')] == 1) & (df[fullName("hour")] >= 8) & (df[fullName("hour")] < 18) 
df[fullName("month")] = df[fullName('tpep_pickup_datetime')].dt.month 
# convert month to a categorical feature using one-hot encoding 
df = pd.get_dummies(df, columns=[fullName("month")]) 
 
# Filter dataset to rides under 3 hours and under 150 miles to remove outliers 
df = df[df[fullName('duration')] > 20] 
df = df[df[fullName('duration')] < 10800] 
df = df[df[fullName('trip_distance')] > 0] 
df = df[df[fullName('trip_distance')] < 150] 
 
# drop null rows 
df = df.dropna(how='any',axis=0) 
 
# select columns to be used as features 
cols = [fullName('work'), fullName('startstationlatitude'), fullName('startstationlongitude'), 
fullName('endstationlatitude'), fullName('endstationlongitude'), fullName('trip_distance'), fullName('weekday'), 
fullName('hour')] 
cols.extend([fullName('month_' + str(x)) for x in range(1, 7)]) 
cols.append(fullName('duration')) 
dataset = df[cols] 
 
 
X = dataset.iloc[:, 0:(len(cols) - 1)].values 
y = dataset.iloc[:, (len(cols) - 1)].values 
X = X.copy() 
y = y.copy() 
del dataset 
del df 
 
print("Done cleaning data") 
 
 



Reference Architecture Page 30 

 

 

print("Training...") 
 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 
 
 
from sklearn.preprocessing import StandardScaler 
sc = StandardScaler() 
X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test) 
 
xgbr = xgb.XGBRegressor(objective ='reg:squarederror', colsample_bytree = 1, subsample = 1, learning_rate = 0.15, 
booster = "gbtree", max_depth = 15, eta = 0.5, eval_metric = "rmse", tree_method=’gpu_hist’, gpu_id=0)  
print("num train elements: " + str(len(X_train))) 
print("Train start time: ", datetime.datetime.now()) 
xgbr.fit(X_train, y_train) 
print("Train end time: ", datetime.datetime.now()) 
y_pred = xgbr.predict(X_test) 
y_pred = y_pred.clip(min=0) 
 
 
from sklearn import metrics 
from sklearn.metrics import mean_squared_log_error 
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) 
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) 
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 
print('Root Mean Squared Log Error:', np.sqrt(mean_squared_log_error( y_test, y_pred))) 
print() 
 
 
print("Saving model") 
pickle.dump(xgbr, open( ProjectRepo('models/') + "XGB.pickle.dat", "wb")) 
 
 
# from xgboost import plot_importance 
# plot_importance(xgbr, max_num_features=10) # top 10 most important features 
# plt.show() 
 
# Finish time 
print("End time: ", datetime.datetime.now()) 
 

The output looks like this: 

 

 Access the Model Management screen, and then click the Register New Model button to open the Register New Model screen. 



Reference Architecture Page 31 

 

 

 Register the serialized model, being sure to include the Model Version and Path to Model Repo. 

 

FIGURE 23. Registering Model 

  



Reference Architecture Page 32 

 

 

 Access the Kubernetes Model Serving screen and then onboard the necessary training applications. 

 

FIGURE 24. Launching Deployment Cluster 

  



Reference Architecture Page 33 

 

 

Now use the deployed model. To make predictions: 

 Create a Postman API call that is formulated as follows: 

a. Prefix: Either http:// or https://, as appropriate. 

b. Body: The access point from the ModelServingLoadbalancer of the Load Balancer role in the Ezmeral Serving Endpoints tab.  

 

FIGURE 25. Deployment Endpoints 

c. Suffix: Registered model name and version number, in the format/model_name_registered/version_number. 

 

FIGURE 26. Model Management 

d. Ending: /predict. 

 Verify that the finished API call looks similar to the example below: 

m24wn02.bluedata:10038/ezmlops-nyctaxi/1.1/predict 
 

 In the Deployment Endpoints tab, click the Copy Auth Token link for the Load Balancer role. 

 

FIGURE 27. Auth Token 

 Launch Postman, and then enter the following information: 

a. Request URL: The URL created in Step 2. 

b. X-AUTH-TOKEN: Auth token copied in Step 3. 

 Use the raw body data to send queries. 

{ 
    "use_scoring": true, 
    "scoring_args": { 
        "work": 0, 
        "start_latitude": 40.57689727, 
        "start_longitude": -73.99047356, 



Reference Architecture Page 34 

 

 

        "end_latitude": 40.72058154, 
        "end_longitude": -73.99740673, 
        "distance": 8, 
        "weekday": 1, 
        "hour": 9, 
        "month_1": 0, 
        "month_2": 1, 
        "month_3": 0, 
        "month_4": 0, 
        "month_5": 0, 
        "month_6": 0 
    } 
} 
 

 Click Send to get a prediction. 

 

FIGURE 28. Taxi Ride Prediction 

See the HPE Ezmeral Container Platform 5.3 documentation for Getting started with AI and ML in Kubernetes for more details.  

Use case on Pima Indian's diabetes prediction 
This section explains model building, model registry, and model serving for Diabetes prediction using end-to-end ML Ops components on HPE 
Ezmeral Runtime. 

• Dataset: https://www.kaggle.com/uciml/pima-indians-diabetes-database 

• Attempting to classify whether or not a patient has diabetes based on some diagnostic measurements 

• All patients in the dataset are females at least 21 years old of Pima Indian heritage 

  

https://docs-containerplatform.mip.storage.hpecorp.net/TrishBillard-HPE_trish_ecp53updates_ezcp53/reference/kubernetes/using-kubernetes/ai-ml-functionality/Getting_Started_with_AI_and_ML_in_Kubernetes.html
https://www.kaggle.com/uciml/pima-indians-diabetes-database


Reference Architecture Page 35 

 

 

Follow the below step-by-step procedure to implement the use case on HPE Ezmeral Runtime. 

 Create an ML Ops tenant. 

 

FIGURE 29. ML Ops Tenant 

 Create a training cluster inside the ML Ops tenant. 

 

FIGURE 30. Training Cluster 

  



Reference Architecture Page 36 

 

 

 Create a notebook and attach a training cluster to it. 

 

FIGURE 31. Creating notebook 

 Upload dataset to project Repository at project_repo/data/pima_Indians/ and scoring script at 
project_repo/code/Tensorflow/Diabetes_Scoring.py (can be found in the notebook default examples directory at 
examples/tensorflow/diabetes_prediction/ Diabetes_Scoring.py).  

Also, create a new directory “Diabetes_Prediction” under project_repo/models. 

The project_repo structure is as shown below. 

 

FIGURE 32. Project repo 

  

https://www.kaggle.com/uciml/pima-indians-diabetes-database


Reference Architecture Page 37 

 

 

 Login to notebook and open the training cluster notebook at /examples/tensorflow/diabetes_prediction/Diabetes_Prediction-k8s.ipynb. 

 

FIGURE 33. Training Cluster notebook 

 Setting up the environment and Data Preprocessing. 

import numpy 
import os 
import pandas as pd 
import tensorflow as tf 
 
## Set the project repo  
def ProjectRepo(path): 
    ProjectRepo = '/bd-fs-mnt/project_repo/'#os.popen('bdvcli --get cluster.project_repo').read().rstrip() 
#    print(ProjectRepo) 
    return ProjectRepo + '/' + path     
print(ProjectRepo('data/Pima_Indians/pima-indians-diabetes.csv')) 
## Load the dataset 
dataset = pd.read_csv(ProjectRepo('data/Pima_Indians/pima-indians-diabetes.csv'), delimiter=",") 
dataset.columns = [ 
    "NumTimesPrg", "PlGlcConc", "BloodP", 
    "SkinThick", "TwoHourSerIns", "BMI", 
    "DiPedFunc", "Age", "HasDiabetes"] 
 

  



Reference Architecture Page 38 

 

 

 Visualizing correlation of variables with a heatmap and plotting histogram. 

%matplotlib inline 
import seaborn as sns 
sns.heatmap(corr, annot = True) 
import matplotlib.pyplot as plt 
dataset.hist(bins=50, figsize=(20, 15)) 
plt.show() 
 

  

Model development (Part 1) 
 Attempting the first model with XGB. 

# First XGBoost model for Pima Indians dataset 
from numpy import loadtxt 
from xgboost import XGBClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
import pickle 
 
# load data 
dataset = loadtxt(ProjectRepo('data/Pima_Indians/pima-indians-diabetes.csv'), delimiter=",",skiprows=1)  
 
# split data into X and y 
X_train = dataset[:,0:8] 
y_train = dataset[:,8] 
 
# fit model no training data 
model = XGBClassifier() 
model.fit(X_train, y_train) 
 
# 
print(model.get_xgb_params()) 
 

 

Model development (Part 2) 
 The second model uses Keras with a remote training cluster. 

a. Save model and prepare for TensorFlow Serving 



Reference Architecture Page 39 

 

 

%%tcl01 
 
import numpy 
import os 
import pandas as pd 
import tensorflow as tf 
from numpy import loadtxt 
from keras.models import Sequential 
from keras.layers import Dense 
 
with tf.device("/device:CPU:0"): 
 
    ## Set the project repo  
    def ProjectRepo(path): 
        ProjectRepo = '/bd-fs-mnt/project_repo/'#os.popen('bdvcli --get cluster.project_repo').read().rstrip() 
        print(ProjectRepo) 
        return ProjectRepo + '/' + path         
 
## Load the dataset 
    print("Loading data") 
    dataset = loadtxt(ProjectRepo('data/Pima_Indians/pima-indians-diabetes.csv'), delimiter=",",skiprows=1)  
    dataset.shape 
 
# Split into input (X) and output (y) variables 
    X = dataset[:,0:8] 
    y = dataset[:,8] 
 
# Define the keras model 
    print("Building model") 
    model = Sequential() 
    model.add(Dense(12, input_dim=8, activation='relu')) 
    model.add(Dense(8, activation='relu')) 
    model.add(Dense(1, activation='sigmoid')) 
 
# Compile the keras model 
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
# Fit the keras model on the dataset 
    print("Training model") 
    model.fit(X, y, epochs=150, batch_size=10, verbose= 0) 
 
# Evaluate the keras model 
    _, accuracy = model.evaluate(X, y, verbose=0) 
    print('Accuracy: %.2f' % (accuracy*100)) 
 
# Make class predictions with the model 
    predictions = model.predict_classes(X) 
 
# Summarize the first 3 cases 
    for i in range(3): 
        print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i])) 
 
# Save model weights and architecture together 
    print("Saving model") 
    model.save(ProjectRepo('models/Diabetes_Prediction/db_remote.h5')) 
 
# Evaluate the keras model 
    _, accuracy = model.evaluate(X, y, verbose=0)g 
    print('Accuracy: %.2f' % (accuracy*100)) 
 
# Make class predictions with the model 



Reference Architecture Page 40 

 

 

    predictions = model.predict_classes(X) 
 
# Summarize the first 5 cases 
    for i in range(5): 
        print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i])) 
     
# Prepare TF Serving 
    print("Preparing for TF Serving") 
    MODEL_VERSION = 1 
    tf.keras.backend.set_learning_phase(0)  
    model = tf.keras.models.load_model(ProjectRepo('models/Diabetes_Prediction/db_remote.h5')) 
    export_path = ProjectRepo('models/Diabetes_Prediction/' + str(MODEL_VERSION)) 
    tf.keras.models.save_model(model, export_path) 
     
# Summarize model. 
    model.summary() 
    print("Done") 
 

 

 See the logs and Job Status as Finished. 

 

FIGURE 34. Job Status Logs 

  



Reference Architecture Page 41 

 

 

 For the model registry, go to tenant UI and register the model. 

 

FIGURE 35. Model Registry 

  



Reference Architecture Page 42 

 

 

 Create Model Serving. 

 

FIGURE 36. Creating Model Serving 

  



Reference Architecture Page 43 

 

 

 Once Model Serving is done, obtain the endpoint and Auth token from the Model Serving section. 

 

FIGURE 37. Model Serving 

 Prediction can be done by making a POST request via curl or postman to the Model Serving endpoint. 

curl -X POST -H "Content-Type:application/json" -H "X-Auth-Token:<Auth Token>" -d '{"use_scoring": true, 
"scoring_args": {"NumPreg":1.0, "Glucose": 85.0, "BloodPressure": 66.0, "SkinThick": 29.0, "Insulin": 0.0, "BMI": 
26.6, "DiabetesPedFunc": 0.351, "Age": 35.0} }' http://<model-serving-
Loadbalancer:port>/<modelname>/<version>/predict 
 
For example : curl -X POST -H "Content-Type:application/json" -H "X-Auth-Token:fb3f6521015978c2f5d58530a42ce720" 
-d '{"use_scoring": true, "scoring_args": {"NumPreg":1.0, "Glucose": 85.0, "BloodPressure": 66.0, "SkinThick": 
29.0, "Insulin": 0.0, "BMI": 26.6, "DiabetesPedFunc": 0.351, "Age": 35.0} }' 
http://m24wn02.bluedata:10050/diabetesmodel/1.0/predict 
 

 
 

 This concludes our testing for ML Ops using the Training cluster and KubeDirector Notebook. 

EZMERAL ML OPS - IN ACTION WITH USE CASE (SPARK OPERATOR) 
Spark operator with K8s 
Spark is the cluster computing framework for big data processing. It can also be used for distributed data processing on different machines. It can 
be used for batch, stream, and interactive data processing. Various file systems can be loaded in Spark. The Spark API is available in Scala, 
Python, Java, and R. Spark provides libraries such as Spark SQL (for structured data processing), MLlib (for scalable and easy ML), GraphX (for 
iterative graph computation within a single system), and Spark Streaming (to process real-time data from various sources). 

  

http://m24wn02.bluedata:10050/diabetesmodel/1.0/predict


Reference Architecture Page 44 

 

 

The Kubernetes Operator for Apache Spark included in the HPE Ezmeral Runtime makes running Spark jobs easy. The Spark operator is a 
custom Kubernetes resource that is configured in a tenant namespace to allow on-demand cluster deployment with Spark Executor pods. For 
managing Spark jobs, it uses declarative specifications. It dynamically creates the specified number of driver and executor pods during the 
execution and then deletes the executor pods and leaves the driver pod in the completed state when the job finishes successfully. The driver pod 
does not consume any Kubernetes resources in this state, and the logs can be viewed to see execution details or results. 

 

FIGURE 38. Spark operator architecture on K8s 

Prerequisites 
• HPE Ezmeral Runtime 

• Platform administrators can access the web interface 

• Root access to the controller host 

System requirements 
• For supported Kubernetes versions, see Kubernetes Version Requirements.  

• For issues and workarounds, see Issues and Workarounds. 

• The following resources must be available to install Kubeflow: h 

• Minimum number of nodes for compute cluster: 2 (1 primary, 1 secondary) 

• Minimum core and memory resources required: 

– CPU Cores: 36 

– Memory (GB): 160 

AD/LDAP authentication requirements 
• The Kubernetes cluster where Kubeflow will be installed must have AD/LDAP user authentication configured. The AD/LDP user 

authentication configuration is posted as a secret in the cluster. 

• For information about setting AD/LDP user authentication configuration, see Authentication, in Creating a New Kubernetes Cluster. 

https://docs.containerplatform.hpe.com/53/reference/system-requirements/kubernetes/Kubernetes_Version_Requirements.html
https://docs.containerplatform.hpe.com/53/reference/issues-workarounds_53.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/clusters/Creating_a_New_Kubernetes_Cluster.html#v52_k8s-creating-a-new-kubernetes-cluster__step3


Reference Architecture Page 45 

 

 

Preparing the environment 
To prepare the environment: 

 Log in to the web interface as a Kubernetes Administrator. 

 Create a Kubernetes cluster, being sure that this cluster meets or exceeds the prerequisites described above.  

 Check the ‘Enable Spark Operator’. 

 

FIGURE 39. Application configurations 

 This bootstraps a Spark operator and creates the following: 

a. Integrated HPE Ezmeral Data Fabric Container Storage Interface (CSI) and associated service accounts. 

b. Spark namespaces, service accounts, cluster roles, and role bindings, Spark applications Custom Resource Definition (CRD), Spark 
operator, and compute templates for Spark. 

c. Auto Ticket Generator Service, roles, and role bindings.  

 Create a new Kubernetes tenant. Do not assign any quotas when creating this tenant. See Figure 13 for tenant creation. 

 Assign a Kubernetes Cluster Administrator user to the cluster created in Step 2. See Figure 12 for assigning users to the cluster. 

 Assign a Tenant Administrator user to the tenant created in Step 4. See Figure 15 for admin assignment to the tenant. 

 Log out of the web interface when this process is complete. 

 HPE Ezmeral Runtime automatically creates the following: 

a. Spark operator namespace. 

b. User secrets for the tenant members (necessary for running the Spark workload with the Spark operator). 

c. The Role-Based Access Control (RBAC) for Spark resources is also configured for the AD/LDAP tenant members. 

Spark operator use case 
Following are the steps to run a Spark job using the Kubernetes Web Terminal as a local user. 

 Log in to the web interface as the Site Administrator, and add/assign Tenant users. See Figure 16 for members assigned to the tenant. 

 In the FS Mounts screen, click the TenantShare link in the Name column of the table to open the FS Mount Browser screen. This screen 
functions identically to the DataTap browser screen. 



Reference Architecture Page 46 

 

 

 Create the data subdirectory in the TenantShare filesystem mount, and then either create a text file or download this example as 
wordcount.txt. 

 Upload the wordcount.txt file to the data subdirectory. In HPE Ezmeral Runtime, the location to this subdirectory is /hcp/tenant-
<tenant_id>/fsmount/data/wordcount.txt. 

$/hcp/tenant-14/fsmount/data/wordcount.txt 
 

 Copy the following text, and then save it as spark-wc.yaml. 

apiVersion: "sparkoperator.hpe.com/v1beta2" 
kind: SparkApplication 
metadata: 
  name: spark-wordcount-secure 
  namespace: mltenant 
spec: 
  #sparkConf: 
    # Note: If you are executing the application as a K8 user that MapR can verify, 
    #       you do not need to specify a spark.mapr.user.secret 
    #spark.mapr.user.secret: spark-user-secret 
    # Note: You do not need to specify a spark.eventLog.dir 
    #       it will be auto-generated with the pattern "maprfs:///apps/spark/<namespace>" 
    #spark.eventLog.dir: "maprfs:///apps/spark/sampletenant" 
  type: Java 
  sparkVersion: 2.4.4 
  mode: cluster 
  image: gcr.io/mapr-252711/spark-2.4.4:202009090453C 
  imagePullPolicy: Always 
  mainClass: org.apache.spark.examples.JavaWordCount 
  mainApplicationFile: "local:///opt/mapr/spark/spark-2.4.4/examples/jars/spark-examples_2.11-2.4.4.6-mapr-
630.jar" 
  restartPolicy: 
    type: Never 
  arguments: 
  - maprfs:///hcp/tenant-14/fsmount/data/wordcount.txt 
  imagePullSecrets: 
  - imagepull 
  driver: 
    cores: 1 
    coreLimit: "1000m" 
    memory: "512m" 
    labels: 
      version: 2.4.4 
    # Note: You do not need to specify a serviceAccount 
    #       it will be auto-generated referencing the pre-existing "hpe-<namespace>" 
    #serviceAccount: hpe-sampletenant 
  executor: 
    cores: 1 
    coreLimit: "1000m" 
    instances: 2 
    memory: "512m" 
    labels: 
      version: 2.4.4 
          
 

 Use the Kubernetes Web Terminal to edit spark-wordcount.yaml by updating the namespace and input file name and path for 
wordcount.txt. 

 Execute the Spark wordcount job by executing the following command: 
$ kubectl apply -f /bd-fs-mnt/TenantShare/apps/spark-wordcount.yaml -n mltenant 

https://github.com/nivdul/spark-in-practice-scala/blob/master/data/wordcount.txt


Reference Architecture Page 47 

 

 

 
 

Check the pods running within the tenant namespace by executing the following command: 

$ kubectl get pods -n mltenant 

 
 Check the job status of the job by executing the following command:  

$ kubectl logs spark-wordcount-secure-driver –follow 

 
 Validate that the job has been completed by checking the status of the pod:  

$ kubectl get pods -n mltenant 

Model training from KubeDirector Notebook using Spark with Livy 
Following are the steps to run a Spark job with Livy operator REST API from KubeDirector Notebook in the Kubernetes by AD/LDAP user. 

 Log in to the web interface as the Site Administrator, add/assign Tenant users. See Figure 16 for members assigned to the tenant. 

 In the DataTaps screen, click the TenantStorage link in the Name column of the table to open the DataTap Browser screen.  

 Create the data subdirectory in the TenantStorage filesystem, and then upload or download it as train.csv. Refer to this example train.csv. 

  

https://www.kaggle.com/c/titanic/data?select=train.csv


Reference Architecture Page 48 

 

 

 Upload the train.csv file to the data subdirectory. In HPE Ezmeral Runtime, the location to this subdirectory is /hcp/tenant-<tenant_id> 
/data/train.csv. 

 

FIGURE 40. DataTaps 

 Fetch Livy endpoint. 

 

FIGURE 41. Service Endpoints 

  



Reference Architecture Page 49 

 

 

 Launch KubeDirector Notebook. 

 

FIGURE 42. Creating Notebook 

 Access JupyterHub Notebook using the service endpoint. 

 

FIGURE 43. Notebook Endpoints 

  



Reference Architecture Page 50 

 

 

 Launch PySpark kernel to configure and create Livy session. 

 

 

 Copy this code to Notebook and execute it to read data from DataTap to Spark Data Frame. 

from pyspark.sql import SparkSession 
from pyspark.sql.functions import isnull, when, count, col 
from pyspark.ml.feature import StringIndexer 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.classification import RandomForestClassifier 
from pyspark.ml.evaluation import MulticlassClassificationEvaluator 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
#spark = SparkSession.builder.appName("titanic").getOrCreate() 
 
# read locally 
sdf = spark.read.format("csv").option('header', 'true').load("dtap://TenantStorage/data/train.csv") # data from 
https://www.kaggle.com/c/titanic/data 
 
# or read from mapr file system 
# titanic_sdf = (spark.read.format("csv").option('header', 'true').load("maprfs:///exthcp/tenant-
5/fsmount/repo/data/train.csv")) 
 
#Converting Spark DataFrame To Pandas Datafame for exploratory data analysis 
pdf = sdf.toPandas() 
 

  



Reference Architecture Page 51 

 

 

 Explore Data analysis. 

  

 Transform and Train model. 

data = sdf.select(col('Survived').cast('float'), col('Pclass').cast('float'), 
                         col('Sex'), col('Age').cast('float'), 
                         col('Fare').cast('float'), col('Embarked')) 
 
data.select([count(when(isnull(c), c)).alias(c) for c in data.columns]).show() 
 
data = dataset.replace('?', None).dropna(how='any') 
 
data = StringIndexer( 
            inputCol='Sex',  
            outputCol='Gender',  
            handleInvalid='keep').fit(data).transform(data) 
data = StringIndexer( 
            inputCol='Embarked',  
            outputCol='Boarded',  
            handleInvalid='keep').fit(data).transform(data) 
 
data = data.drop('Sex') 
data = data.drop('Embarked') 
data.show() 
 
required_features = ['Pclass', 'Age', 'Fare', 'Gender', 'Boarded'] 
assembler = VectorAssembler(inputCols=required_features, outputCol='features') 
transformed_data = assembler.transform(data) 
(training_data, test_data) = transformed_data.randomSplit([0.8,0.2]) 
rf = RandomForestClassifier(labelCol='Survived',  
                            featuresCol='features', 
                            maxDepth=5) 
model = rf.fit(training_data) 
 



Reference Architecture Page 52 

 

 

 

 Validate and save model. 

predictions = model.transform(test_data) 
evaluator = MulticlassClassificationEvaluator( 
               labelCol='Survived',  
               predictionCol='prediction',  
               metricName='accuracy') 
accuracy = evaluator.evaluate(predictions) 
print('============' * 10) 
print('Test Accuracy = ', accuracy) 
print('============' * 10) 
# saving locally 
model_location = "maprfs:///hcp/tenant-8/dco/data/sparkml-titanic4" 
 
# saving on mapr file system 
# model_location = "maprfs:///exthcp/tenant-5/fsmount/repo/models/sparkml-titanic" 
 
model.save(model_location) 
print("Model Save to location : {}".format(model_location)) 
 



Reference Architecture Page 53 

 

 

 

 

 

FIGURE 44. Data Source Browser 

  



Reference Architecture Page 54 

 

 

EZMERAL ML OPS – EXPERIMENT TRACKING WITH MLFLOW 
The use case contains dataset preprocessing, model training and evaluation, model tuning via MLflow tracking, and finding the best-trained 
model. 

Goal: Predict rented_bikes (count per hour) based on weather and time information. 

Prerequisite 
Dataset: Bike Sharing Dataset 

Use case workflow 
Following are the steps to implement the use case and run the experiment into the MLflow model server. 

 Initialize the web terminal. 

 After login to HPE Ezmeral Container Platform 5.3 and in MLOps Tenant, initialize the web terminal. 

 

FIGURE 45. Dashboard 

 Create Secret. Once the web terminal is connected, create a file mlflow-secret.yaml. 

apiVersion: v1 
kind: Secret 
type: Opaque 
metadata: 
  name: mlflow-secret 
  labels: 
    kubedirector.hpe.com/secretType: mlflow 
data: 
  AWS_ACCESS_KEY_ID: YWRtaW4= #admin 
  AWS_SECRET_ACCESS_KEY: YWRtaW4xMjM= #admin123 
  MLFLOW_ARTIFACT_ROOT: czM6Ly9tbGZsb3c= #s3://mlflow 

http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip


Reference Architecture Page 55 

 

 

 

$ kubectl create -f mlflow-secret.yaml -n testing 
 

 

 Launch MLflow Server. Go to the Application Tab and launch MLflow Server. 

 

FIGURE 46. Kubernetes Applications 

  



Reference Architecture Page 56 

 

 

 We need to attach the secret created in step 3 in YAML of MLflow Server before launching it. 

 

FIGURE 47. Create/edit KubeDirector YAML 

 Accessing Minio and MLflow Server. 

 

FIGURE 48. Service Endpoints 

  



Reference Architecture Page 57 

 

 

 On the MinIO Browser page, create a bucket name mlflow which is configured in mlflow-secret.yaml. 

 

FIGURE 49. MinIO Browser 

MLflow Server 
 Open the MLflow Server window. 

 

FIGURE 50. MLflow Server 



Reference Architecture Page 58 

 

 

 Deploy KubeDirector Notebook. Go to the Notebook Tab and launch Jupyter Notebook. 

 

FIGURE 51. Launch Jupyter Notebook 

 Attach ‘clusters’ and ‘secret’ in Launch YAML of the Jupyter Notebook. 

 

FIGURE 52. Edit Launch yaml 

In Figure 52, mlflow in clusters and mlflow-secret in secrets are attached. 

– mlflow is the application name which deployed 

– mlflow-secret is the secret created 

  



Reference Architecture Page 59 

 

 

 Launching Notebook with MLflow cluster attached from HPE Ezmeral UI has known issue, so notebook to be created from the terminal. Copy 
the above YAML file and create a file at the terminal and apply using kubectl, as shown below (workaround). 

 

 Access the Notebook from the Notebook Endpoints tab. 

 

FIGURE 53. Notebook Endpoints 

 Upload Notebook File and Dataset to run the experiment. 

 Login to the Jupyterhub. 

 

FIGURE 54. Login to Jupyterhub 

  



Reference Architecture Page 60 

 

 

 After login to Jupyter Notebook upload the care directory Bike-Sharing-MLFlow-UseCase and upload Bike-Sharing-MLFlow.ipynb, day.csv, 
and hour.csv from https://github.com/SANDataHPE/MLFlow-Examples/tree/main/Bike-Sharing-MLFlow-Example. 

 

FIGURE 55. Jupyter Notebook 

 Setup ‘ML Flow’ magics. 

a. Add the user (which we’ve logged in to notebook with) to the platform and give it member access to the tenant. 

b. Run %kubeRefresh in one of the cells. 

 

c. Load MLflow server and the secret to our notebook. Run %loadmlflow. 

  

https://github.com/SANDataHPE/MLFlow-Examples/tree/main/Bike-Sharing-MLFlow-Example


Reference Architecture Page 61 

 

 

 Execute cell in Notebook file. 

a. Each notebook cell contains a comment about the task which we are performing in each cell. Read the markdown before executing the 
cell. Follow the instruction written in the notebook before executing each cell. 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
import mlflow 
import mlflow.sklearn 
from mlflow import log_metric, log_param, log_artifact 
 
from sklearn.ensemble import GradientBoostingRegressor 
from sklearn.metrics import mean_squared_error 
from sklearn.model_selection import KFold, cross_val_score, train_test_split 
from sklearn.inspection import permutation_importance 
from mlflow.models.signature import infer_signature 
from sklearn import tree 
 
from pydotplus import graph_from_dot_data 
import graphviz 
from IPython.display import Image 
 
import itertools 
 
plt.style.use("fivethirtyeight") 
pd.plotting.register_matplotlib_converters() 
 
import warnings 
warnings.filterwarnings('ignore') 
bike_sharing = pd.read_csv("hour.csv") 
bike_sharing  
# remove unused columns 
bike_sharing.drop(columns=["instant", "dteday", "registered", "casual"], inplace=True) 
 
# use better names 
bike_sharing.rename( 
    columns={ 
        "yr": "year", 
        "mnth": "month", 
        "hr": "hour_of_day", 
        "holiday": "is_holiday", 
        "workingday": "is_workingday", 
        "weathersit": "weather_situation", 
        "temp": "temperature", 
        "atemp": "feels_like_temperature", 
        "hum": "humidity", 
        "cnt": "rented_bikes", 
    }, 
    inplace=True, 
) 
 
# show samples 
bike_sharing 
hour_of_day_agg = bike_sharing.groupby(["hour_of_day"])["rented_bikes"].sum() 
 
hour_of_day_agg.plot( 
    kind="line",  
    title="Total rented bikes by hour of day", 
    xticks=hour_of_day_agg.index, 



Reference Architecture Page 62 

 

 

    figsize=(15, 10), 
) 
# Split the dataset randomly into 70% for training and 30% for testing. 
X = bike_sharing.drop("rented_bikes", axis=1) 
y = bike_sharing.rented_bikes 
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=42) 
 
print(f"Training samples: {X_train.size}") 
print(f"Test samples: {X_test.size}") 
def rmse(y, y_pred): 
    return np.sqrt(mean_squared_error(y, y_pred)) 
 
 
def rmse_score(y, y_pred): 
    score = rmse(y, y_pred) 
    print("RMSE score: {:.4f}".format(score)) 
    return score 
def rmsle_cv(model, X_train, y_train): 
    kf = KFold(n_splits=3, shuffle=True, random_state=42).get_n_splits(X_train.values) 
    # Evaluate a score by cross-validation 
    rmse = np.sqrt(-cross_val_score(model, X_train.values, y_train, scoring="neg_mean_squared_error", cv=kf)) 
    return rmse 
 
 
def rmse_cv_score(model, X_train, y_train): 
    score = rmsle_cv(model, X_train, y_train) 
    print("Cross-Validation RMSE score: {:.4f} (std = {:.4f})".format(score.mean(), score.std())) 
    return score 
def model_feature_importance(model): 
    feature_importance = pd.DataFrame( 
        model.feature_importances_, 
        index=X_train.columns, 
        columns=["Importance"], 
    ) 
 
    # sort by importance 
    feature_importance.sort_values(by="Importance", ascending=False, inplace=True) 
 
    # plot 
    plt.figure(figsize=(12, 8)) 
    sns.barplot( 
        data=feature_importance.reset_index(), 
        y="index", 
        x="Importance", 
    ).set_title("Feature Importance") 
    # save image 
    plt.savefig("model_artifacts/feature_importance.png", bbox_inches='tight') 
 
def model_permutation_importance(model): 
    p_importance = permutation_importance(model, X_test, y_test, random_state=42, n_jobs=-1) 
 
    # sort by importance 
    sorted_idx = p_importance.importances_mean.argsort()[::-1] 
    p_importance = pd.DataFrame( 
        data=p_importance.importances[sorted_idx].T, 
        columns=X_train.columns[sorted_idx] 
    ) 
 
    # plot 
    plt.figure(figsize=(12, 8)) 
    sns.barplot( 



Reference Architecture Page 63 

 

 

        data=p_importance, 
        orient="h" 
    ).set_title("Permutation Importance") 
 
    # save image 
    plt.savefig("model_artifacts/permutation_importance.png", bbox_inches="tight") 
 
def model_tree_visualization(model): 
    # generate visualization 
    tree_dot_data = tree.export_graphviz( 
        decision_tree=model.estimators_[0, 0],  # Get the first tree, 
        label="all", 
        feature_names=X_train.columns, 
        filled=True, 
        rounded=True, 
        proportion=True, 
        impurity=False, 
        precision=1, 
    ) 
 
    # save image 
    graph_from_dot_data(tree_dot_data).write_png("model_artifacts/Decision_Tree_Visualization.png") 
 
    # show tree 
    return graphviz.Source(tree_dot_data) 
# Track params and metrics 
def log_mlflow_run(model, signature): 
    # Auto-logging for scikit-learn estimators 
    # mlflow.sklearn.autolog() 
 
    # log estimator_name name 
    name = model.__class__.__name__ 
    mlflow.set_tag("estimator_name", name) 
 
    # log input features 
    mlflow.set_tag("features", str(X_train.columns.values.tolist())) 
 
    # Log tracked parameters only 
    mlflow.log_params({key: model.get_params()[key] for key in parameters}) 
 
    mlflow.log_metrics({ 
        'RMSE_CV': score_cv.mean(), 
        'RMSE': score, 
    }) 
 
    # log training loss 
    for s in model.train_score_: 
        mlflow.log_metric("Train Loss", s) 
 
    # Save model to artifacts 
    mlflow.sklearn.log_model(model, "model", signature=signature) 
 
    # log charts 
    mlflow.log_artifacts("model_artifacts") 
 
    # misc 
    # Log all model parameters 
    mlflow.log_params(model.get_params()) 
    mlflow.log_param("Training size", X_test.size) 
    mlflow.log_param("Test size", y_test.size) 
# GBRT (Gradient Boosted Regression Tree) scikit-learn implementation  



Reference Architecture Page 64 

 

 

model_class = GradientBoostingRegressor 
parameters = { 
    "learning_rate": [0.1, 0.05, 0.01], 
    "max_depth": [4, 5, 6], 
    # "verbose": True, 
} 
# generate parameters combinations 
params_keys = parameters.keys() 
params_values = [ 
    parameters[key] if isinstance(parameters[key], list) else [parameters[key]] 
    for key in params_keys 
] 
runs_parameters = [ 
    dict(zip(params_keys, combination)) for combination in itertools.product(*params_values) 
] 
 
# training loop 
for i, run_parameters in enumerate(runs_parameters): 
    print(f"Run {i}: {run_parameters}") 
 
    # mlflow: stop active runs if any 
    if mlflow.active_run(): 
        mlflow.end_run() 
    # mlflow:track run 
    mlflow.start_run(run_name=f"Run {i}") 
 
    # create model instance 
    model = model_class(**run_parameters) 
 
    # train 
    model.fit(X_train, y_train) 
 
    # get evaluations scores 
    score = rmse_score(y_test, model.predict(X_test)) 
    score_cv = rmse_cv_score(model, X_train, y_train) 
     
    # generate charts 
    model_feature_importance(model) 
    plt.close() 
    model_permutation_importance(model) 
    plt.close() 
    model_tree_visualization(model) 
 
    # get model signature 
    signature = infer_signature(model_input=X_train, model_output=model.predict(X_train)) 
 
    # mlflow: log metrics 
    log_mlflow_run(model, signature) 
 
    # mlflow: end tracking 
    mlflow.end_run() 
    print("") 
 
best_run_df = mlflow.search_runs(order_by=['metrics.RMSE_CV ASC'], max_results=1) 
if len(best_run_df.index) == 0: 
    raise Exception(f"Found no runs for experiment '{experiment_name}'") 
 
best_run = mlflow.get_run(best_run_df.at[0, 'run_id']) 
best_model_uri = f"{best_run.info.artifact_uri}/model" 
best_model = mlflow.sklearn.load_model(best_model_uri) 
# print best run info 



Reference Architecture Page 65 

 

 

print("Best run info:") 
print(f"Run id: {best_run.info.run_id}") 
print(f"Run parameters: {best_run.data.params}") 
print("Run score: RMSE_CV = {:.4f}".format(best_run.data.metrics['RMSE_CV'])) 
print(f"Run model URI: {best_model_uri}") 
model_feature_importance(best_model) 
model_permutation_importance(best_model) 
model_tree_visualization(best_model) 
test_predictions = X_test.copy() 
# real output (rented_bikes) from test dataset 
test_predictions["rented_bikes"] = y_test 
 
# add "predicted_rented_bikes" from test dataset 
test_predictions["predicted_rented_bikes"] = best_model.predict(X_test).astype(int) 
 
# show results 
test_predictions 
# plot truth vs prediction values 
test_predictions.plot( 
    kind="scatter", 
    x="rented_bikes", 
    y="predicted_rented_bikes", 
    title="Rented bikes vs predicted rented bikes", 
    figsize=(15, 15), 
) 
 

NOTE 
We need to install all the required packages for the use case as shown below, if already installed this step can be skipped. 

 Visualize the best model. 

  

  



Reference Architecture Page 66 

 

 

 Model Artifact in MLflow Server.  

a. For the model artifact, we can access the MLflow Server. 

 

FIGURE 56. MLflow Experiments 

MONITORING 
There are different levels of monitoring with HPE Ezmeral ML Ops. 

• At the platform level, the HPE Ezmeral Runtime provides dashboards that allow users to monitor resource utilization 

• At the application level such as Kubeflow, containerized monitoring services such as Istio Prometheus are provided 

  



Reference Architecture Page 67 

 

 

Kubernetes administrator 
Kubernetes users who have access to the site admin tenant can view the platform administrator dashboard which presents a high-level overview 
of the Kubernetes activity. Figure 57 shows the Usage tab displays usage information on a per-tenant basis. Refer to the HPE Ezmeral Container 
Platform 5.3 documentation, Dashboard – Kubernetes Administrator for more details. 

Beginning with HPE Ezmeral Runtime 5.3, Dashboard views show additional GPU usage for Tesla-class or Quadro-class GPU families. For site 
administrators, the Dashboard → Usage tab shows the GPU devices used system-wide, while for Cluster Admin the stats would show usage 
cluster-wide. Finally, for tenant members, the resource usage statistics provide pod-specific GPU device information. 

 

FIGURE 57. Platform administrator usage dashboard 

Figure 59 shows the Load tab displays load statistics for the on-premises CPU, GPU, memory, and network resources within the K8s platform. 

 

FIGURE 58. Platform administrator load dashboard 

  

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/Dashboard__Kubernetes_Administrator.html


Reference Architecture Page 68 

 

 

Kubernetes tenant/project administrator 
HPE Ezmeral Runtime users who are logged into a Kubernetes tenant/project with the tenant/project administrator role can access the 
Kubernetes tenant/project administrator Dashboard. A tenant/project admin has access to the main menu and can view login details, alerts, etc. 
For more details, see the Toolbar & Main Menu - Kubernetes Tenant Admin page.  

 

FIGURE 59. Tenant/project admin Dashboard 

Istio and Prometheus 
Prometheus is used for monitoring and Istio is used for managing network communication in the form of a service mesh. 

Istio Prometheus use case 
 Create tunnel for 9090 port via SSH. 

$ ssh -L 9090:localhost:9090 root@<master node>  
 

 

  

https://docs.containerplatform.hpe.com/53/reference/kubernetes/tenant-project-administration/Toolbar__Main_Menu__Kubernetes_TenantProject_Admin.html
mailto:root@172.30.226.58


Reference Architecture Page 69 

 

 

 Enable port forwarding. 

$ kubectl port-forward svc/prometheus -n istio-system 9090:9090 
 

 On the master node, start up the Firefox, and go to $ http://127.0.0.1:9090/. 

 Select Status → Targets, and then verify that all targets have been discovered and their statuses are being monitored. 

 

FIGURE 60. Targets 

 Select Status → Service Discovery, and then verify that all services have been discovered and their statuses are being monitored. 

 

FIGURE 61. Service Discovery 

  

http://127.0.0.1:9090/


Reference Architecture Page 70 

 

 

 Navigate to Graph. 

 

FIGURE 62. Graph 

 Choose any command you want and select it. 

 Click the Execute button and observe the Graph tab. 

SUMMARY 
Enterprises across all industries are embarking on a hybrid cloud journey for the development and deployment of their data-driven analytics and 
AI/ML applications. The continuous integration/continuous deployment (CI/CD) workflows, collectively referred to as DevOps, have become 
ubiquitous for software development today. On the machine learning front, data scientists still spend a significant amount of time and effort 
moving projects from development to production. Model version control is still largely manual, making it hard to update models in production. 
Code sharing is manual; data copied onto local storage leads to the variability of results between environments. There is a lack of standardization 
tools and frameworks, which makes it tedious and time-consuming to ensure the accuracy of predictions across all environments.  

HPE Ezmeral Machine Learning Ops Software (HPE Ezmeral ML Ops) includes the capabilities and functionality of the HPE Ezmeral Runtime 
while also providing DevOps like agility to enterprise machine learning. With HPE Ezmeral ML Ops, enterprises can implement CI/CD workflows 
and standardize their ML pipelines. The HPE Ezmeral ML Ops software platform supports every stage of the machine learning lifecycle — 
supporting sandbox experimentation with a choice of ML/DL frameworks, integrations with model and code repositories, to deploying and 
tracking models in production.  

HPE Ezmeral ML Ops gives data scientists and developers the ability to quickly and easily build and train machine learning models. HPE Ezmeral 
ML Ops allows data scientists to manage and track models built on any platform and deploy them into a scalable and secure production 
environment. Using HPE Ezmeral ML Ops, data scientists can spin-up containerized environments for distributed data processing, Machine 
Learning (ML), or Deep Learning (DL) in minutes rather than weeks. HPE Ezmeral ML Ops provides data science teams the flexibility to run their 
ML/DL workloads either on-premises, in multiple public clouds, or in a hybrid model and respond to dynamic business requirements in a variety 
of use cases.  

With HPE Ezmeral ML Ops Software, Hewlett Packard Enterprise is making it easy for organizations to deliver a flexible and secure multitenant 
architecture, with the agility, flexibility, and performance needed to address evolving workload and application requirements. HPE Ezmeral ML 
Ops is deployed using pre-tested and optimized HPE Apollo building blocks on-premises, as well as in hybrid IT architectures and multi-cloud 
models. 

Companies are driving digital transformation and investing in innovation to remain competitive. They are looking to deploy modern apps faster 
and simplify the production environment in a hybrid cloud architecture. They may have a mandate to move their application portfolio to the 
cloud or containers. Many organizations are still struggling to achieve these goals due to a lack of time and expertise. This Reference 
Architecture showcases the “lift-and-shift” application modernization use case which allows organizations to accelerate time-to-value by building 
a workable infrastructure the first time and every time. 

With the HPE Ezmeral Runtime, enterprises now have a unified Kubernetes-based software solution for DevOps, CI/CD workflow, application 
modernization across hybrid cloud architecture, streamlining deployment, and operation with consistent orchestration and management. The 
platform acts as the control plane for container management and provides persistent container storage across multiple versions of open-source 
Kubernetes for container orchestration. The solution delivers a simpler, more scalable approach to modernizing applications. This is achieved 
using a scalable, code-driven container solution that, once assembled, can be configured within hours. This eliminates the complexities associated 



Reference Architecture Page 71 

 

 

with implementing a K8s container platform across an enterprise data center and provides the automation of hardware and software 
configuration to quickly provision and deploy a containerized environment at scale.  

The solution provides customers with greater efficiency, higher utilization, and bare-metal performance by “collapsing the stack” and eliminating 
the need for virtualization. Developers have secured on-demand access to their environment. They can develop apps and release code faster, 
with the portability of containers to build once and deploy anywhere. IT teams can manage multiple Kubernetes clusters with multitenant 
container isolation and data access, for any workload, from edge to core to cloud. The benefits of containers, beyond cloud-native microservices-
architected stateless applications, can be extended by providing the ability to containerize monolithic stateful analytic applications with 
persistent data. 

The combination of HPE Ezmeral Runtime paired with HPE Apollo compute and HPE Nimble Storage delivers a composable architecture that 
can rapidly deploy modern containers supporting the new application framework. Ultimately, this results in faster digital transformation for 
businesses by helping organizations drastically increase the velocity of application development and accelerate innovation. This Reference 
Architecture provides an overview of an enterprise-grade solution that helps organizations increase agility, simplify operations, and deliver a 
cloud-like experience while offering a compelling return on investment. 

APPENDIX A: KUBEFLOW AND TESTS OF USE CASES 
For Kubeflow installation, see the HPE Ezmeral Container Platform 5.2 documentation Kubeflow installation page. For HPE Ezmeral Runtime and 
uninstallation, see Uninstalling Kubeflow page. 

We have used kubeflow_tutorials.zip, for Kubeflow use case testing which contains sample files for all of the included Kubeflow tutorials. The 
testing was done in a non-air-gapped environment.  

  

http://docs.bluedata.com/52_k8s-kubeflow-installation
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/kubeflow/Uninstalling_Kubeflow.html
https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 72 

 

 

Figure A1 shows Kubeflow architecture. 

 

FIGURE A1. Kubeflow architectural diagram 

  



Reference Architecture Page 73 

 

 

KubeFlow components  
The following table lists the components that Kubeflow can deploy.  

TABLE A1. Kubeflow Components (Kubeflow Operator version 1.2) 

Component Version 

Argo 2.3.0 

Dex 2.22.0 

Istio 1.3.1  

Grafana 6.0.2 

Jupyter Web Application 1.0.0 

Katib v1beta1 

Kiali 1.4.0 

Kfserving 0.3.0 

Kubeflow Dashboard 1.0.0  

ML Metadata 0.21.1 

Notebook Controller kf-ecp-5.3.0 

Pipelines 1.0.4 

PyTorch 1.0.0 

Seldon 1.4.0 

Spartakus 1.1.0 

TensorFlow 1.0.0 

 

Kubeflow components use cases GitHub issue summarization - Training with Jupyter 
The steps followed in this Tutorial: GitHub Issue Summarization can be found in the official BlueData Documentation. 

To begin with the Kubeflow examples: 

 Log in to HPE Ezmeral Runtime. 

 

FIGURE A2. HPE Ezmeral Logging Page 

https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/tutorials/kubeflow/Tutorial_GitHub_Issue_Summarization__Training_with_Jupyter.html


Reference Architecture Page 74 

 

 

 Select the Tenant and navigate to Kubeflow Dashboard. 

 

FIGURE A3. Navigating Kubeflow Dashboard 

 A list of Notebook Servers in Kubeflow Dashboard appears. 

 

FIGURE A4. NB Servers in Kubeflow Dashboard 



Reference Architecture Page 75 

 

 

 Select Notebook Servers and create one with the following instructions: 

a. In the Data Volume section, select ReadWriteMany. 

b. Change the Mount Path to a shorter name, such as /data. 

c. Leave the Workspace Volume as-is. 

d. Spawn the notebook by clicking Launch at the end of the page. 

 

FIGURE A5. NB Servers 

  



Reference Architecture Page 76 

 

 

e. Connect to the Notebook Server created. 

 

FIGURE A6. NB Servers in Ready State 

 Open a new terminal from the Jupyter Hub and follow the steps below: 

a. Download the kubeflow_tutorials.zip file, containing sample files for all of the included Kubeflow tutorials. 

$ pwd 
/home/jovyan 
 
$ wget kubeflow_tutorials.zip 

 

b. In a non-air-gapped environment only, execute the following commands to create the mapr-image-pull secrets and patch the Notebook. 
This must be done before pulling the Jupyter Notebook image for this tutorial. 

$ kubectl apply -f imagepull-secrets.yaml 
secret/mapr-imagepull-secrets created 
 
$ kubectl patch serviceaccount default-editor -p '{"imagePullSecrets": [{"name": "mapr-imagepull-
secrets"}]}' 
serviceaccount/default-editor patched 

 
c. Connect to the Notebook, then open a new terminal, and then clone the Kubeflow examples repo: 

$ git clone https://github.com/mapr/kubeflow-examples.git 
 

d. Return to the Jupyter folder list, and then open the file: 
$ kubeflow-examples/github_issue_summarization/notebooks/Training.ipynb 

 

FIGURE A7. Training Notebook 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://github.com/mapr/kubeflow-examples.git


Reference Architecture Page 77 

 

 

e. In the Set path for the data_dir cell, change the data dir to: 

%env DATA_DIR=/data 

 

f. In the pre-process data for the Deep Learning cell, comment out the magic function: 

%%time 

 

g. To execute each of the cells in the Notebook, either: 

I. Click the Rerun button to run all the steps. 

II. Click the Run button to manually run each step one at a time. 

h. After training completes, use the Notebook terminal to copy the files to the MapR file system: 

$ cd kubeflow-examples/github_issue_summarization/notebooks/  
$ cp *.h5 /data/  
$ cp *.dpkl /data/  

 

 

GitHub issue summarization – Serving with Seldon 
Download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials. 

This tutorial uses the following image idzikovsky/sandbox:seldon-issuesum. 

 Apply the deployment by executing the following command. 

$ kubectl apply -f seldon-issue-sum-deployment.yaml 
Seldondeployment.machinelearning.seldon.io/issue-summarization created 
 

 Verify that the Seldon deployment was created. 

$ kubectl get sdep 
NAME         AGE 
issue-summarization  2m54s 
 
  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 78 

 

 

 Verify that the pods are running. 

$ kubectl get pods | grep classifier 
issue-summarization-example-0-classifier-59fbc99c8-9zt6 2/2 Running 0 7m8s 
 

 Connect to the Notebook and upload the file seldon-request.py to send a sample request to the server model. 

 

 In the Notebook terminal, install the following Python dependencies. 

$ pip install requests lxml --user 
 

 Execute seldon-request.py with the following options. 

$ python seldon-request.py http://istio-ingressgateway.istio-system.svc.cluster.local:80 imageadmin hp123456 
imageadmin issue-summarization 
{"data":{"names":["t:0"],"ndarray":[["add support for for"]]},"meta":{}} 
 

 To delete the deployment, execute the following commands. 

$ kubectl get sdep 
NAME         AGE 
issue-summarization  18m 
 
$ kubectl delete sdep issue-summarization 
Seldondeployment.machinelearning.seldon.io “issue-summarization” deleted 
 
Training with TensorFlow (Financial series) 
Before beginning this tutorial, download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials. 

Step 1: Mount the MapRFS Directory 

To mount the MapRFS directory: 

 Obtain pvc-tf-training-fin-series.yaml from the zip file mentioned above for the Persistent Volume Claim (PVC). 

 Apply the .yaml file to create the PVC: 
$ kubectl apply -f pvc-tf-training-fin-series.yaml 

 
 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 79 

 

 

 Verify that the PVC was created and is in the bound state: 
$ kubectl get pvc 

 
 

Step 2: Exploration phase 

To complete the exploration phase: 

 Open the Kubeflow web interface. 

 Follow the procedure based on the example described here (link opens an external website in a new browser tab/window) to spawn the 
Notebook. Do not create a Data Volume; simply select New Workspace and leave the remaining options set to their default values. 

 Connect to the Notebook server, and then open a terminal. 

 Execute the following command: 

$ curl 
https://raw.githubusercontent.com/kubeflow/examples/master/financial_time_series/Financial%20Time%20Series%20w
ith%20Finance%20Data.ipynb --output FinancialTimeSerieswithFinanceData.ipynb 
 

 
 

 Open the uploaded Notebook. 

 

FIGURE A8. Financial Time Series with Finance Data Notebook 

 Walkthrough the Notebook step by step to better understand the problem and suggested solution(s). 

https://github.com/kubeflow/examples/tree/master/financial_time_series#exploration-viajupyter-hub


Reference Architecture Page 80 

 

 

Step 3: Training phase 

To complete the training phase: 

 If required, use the already-pushed image nskopiuk/sandbox:tensorflowimage-finseries, else skip to step 3 if not. 

 Build and push the image. 
$ git clone https://github.com/mapr/private-kubeflow-examples.git cd private-kubeflow-
examples/financial_time_series/tensorflow_model export TRAIN_PATH= <your-docker-
username>/sandbox:tensorflowimage-finseries docker build -t $TRAIN_PATH . docker push $TRAIN_PATH 

 

 Obtain the secrets file user-gcp-sa from the zip file mentioned above (required for this example). 
$ kubectl create secret generic user-gcp-sa --from-file user-gcp-sa.json 

 Apply the TF-training job using the .yaml file from the zip file mentioned above. 

$ kubectl apply -f financial-series-tfjob.yaml 
 

 
 

 Verify that user-gcp-sa is mounted. 
$ kubectl exec -it trainingjob-ps-0 -- /bin/sh 
# ls /auth/ 
user-gcp-sa.json 

 

 Verify that the TF-job trainingjob was successfully created. 

$ kubectl get tfjobs 
 

 
 

 Verify that pods were created, run, and completed. 

$ kubectl get pods | grep trainingjob 

 

 

  



Reference Architecture Page 81 

 

 

 Check the logs to see the training job description. 
$ kubectl logs trainingjob-ps-0 tensorflow 

 

Serving a TensorFlow model with KFServing (Financial series) 
Before beginning this tutorial, download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials. 

Step 1: Create and apply the YAML file 

To complete the tutorial: 

 Obtain the serving YAML file from the zip file mentioned above. 

 Apply the file. 

$ kubectl apply -f financial-series-serving.yaml 
 

 
 

 Verify that the inference service, revision, and relevant pods have been created. 

KSVC: 
$ kubectl get ksvc 

 
 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 82 

 

 

Revision: 
$ kubectl get revision 

 
 

Inference Services: 
$ kubectl get inferenceservices 

 
 

Pods: 
$ kubectl get pods | grep finance-sample 

 
 

 Verify that virtual services have been created. 

$ kubectl get virtualservices | grep finance-sample 
 

 
 

Step 2: Perform inferences against the served model 

To send a request to the model: 

 Obtain kfserving-request.py from the zip file mentioned above. 

 Install the following Python dependencies. 

$ pip install requests lxml –user 

 Launch kfserving-request.py with the following options. 

python kfserving-request.py <base_url> <login> <password> <profile_name> 
For example: 
$ python kfsrving-request.py http://cv-hcp-lb1.qa.lab:10046 imageadmin 12341234 imageadmin 

 
 To send requests from the Jupyter Notebook terminal, use the ingressgateway address (istio-ingressgateway.svc.cluster.local). For example: 

$ python kfserving-request.py http://istio-ingressgateway.istio-system.svc.cluster.local:80 imageadmin 
12341234 imageadmin 
 

The output will be similar to the following: 
200 
{'predictions': [{'model-version': '1', 'prediction': 0}]} 



Reference Architecture Page 83 

 

 

Training a PyTorch model (PyTorch MNIST) 
Download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials, if desired. 

1. Obtain vim pytorch-mnist-ddp-cpu.yaml from the zip file mentioned above. 

$ vim pytorch-mnist-ddp-cpu.yaml 
 

 Create the PyTorch Job. 

$ kubectl apply -f pytorch-mnist-ddp-cpu.yaml 
pytorchjob.kubeflow.org/pytorch-mnist-ddp-cpu created 

 
 Verify that the PyTorch job was created. 

$ kubectl get pytorchjobs 
NAME          STATE    AGE 
pytorch-mnist-ddp-cpu  Succeeded  108s 

 
 Verify that relevant pods have been created. 

$ kubectl get pods -l pytorch-job-name=pytorch-mnist-ddp-cpu 
NAME               READY  STATUS   RESTARTS  AGE 
pytorch-mnist-ddp-cpu-master-0  0/1   Completed  0     10m 
pytorch-mnist-ddp-cpu-worker-0  0/1   Completed  0     10m 
pytorch-mnist-ddp-cpu-worker-1  0/1   Completed  0     10m 
pytorch-mnist-ddp-cpu-worker-2  0/1   Completed  0     10m 

 

 Inspect the logs to observe PyTorch training progress: 

$ PODNAME=$(kubectl get pods -l pytorch-job-name=pytorch-mnist-ddp-cpu,pytorch-replica-type=master,pytorch-
replica-index=0 -o name) 
kubectl logs -f ${PODNAME}$ 

 
 Verify the PyTorch Job pod statuses, and wait until all pods show the status Completed. 

$ kubectl get pods -l pytorch-job-name=pytorch-mnist-ddp-cpu 
 

 Check the logs again to verify that the output contains the following information. 

$ kubectl logs -f ${PODNAME}$ 
Using CUDA 
Using distributed PyTorch with gloo backend 
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz 
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz 
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 
Processing... 
Done! 
Train Epoch: 1 [58880/60000 (98%)]   loss=0.2060 
Train Epoch: 1 [59520/60000 (99%)]   loss=0.0644 
 
accuracy=0.9664 

 
 Use the describe command to check PyTorch job status. 

$ kubectl describe pytorchjobs pytorch-mnist-ddp-cpu 
 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 84 

 

 

The output should look similar to the following: 

 
 
 

Additional information 
After training is complete, the files will be located in the MapR file system. 

$ ssh root@<controller_node_ip_address> 
bdmapr --root bash 
hadoop fs -ls <volumePath>/pytorch/model 
 

Result: 
Found 1 items 
-rw-r--r--  3 root   88548 2020-07-15 09:36 /mapr-csi/k8s-10--siaitqgucc/pytorch/model/model_cpu.dat 

 

Sample Pipeline in the pipelines interface 
Refer to an example from the Kubeflow documentation (The link opens an external website in a new browser tab/window). 

 Open the Kubeflow dashboard (see Accessing the Kubeflow Dashboard), and then select Pipelines. 

 

FIGURE A9. Kubeflow Pipeline 

 Click the sample name [Tutorial] DSL- Control Structures. 

https://www.kubeflow.org/docs/pipelines/pipelines-quickstart/#run-a-basic-pipeline
https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/kubeflow/Accessing_the_Kubeflow_Dashboard.html


Reference Architecture Page 85 

 

 

 

FIGURE A10. Kubeflow Pipeline Dashboard 

 Click Experiments, and then follow the on-screen prompts. 

 

FIGURE A11. Create new Experiment 

  



Reference Architecture Page 86 

 

 

 Enter the Run details and click Start. 

 

FIGURE A12. Create Run 

 Select the run that was created in step 4 on the Experiments dashboard. 

 

FIGURE A13. Select Run on Experiments Dashboard 



Reference Architecture Page 87 

 

 

 Explore the graph and other aspects of the run by clicking the graph components and other interface elements. 

 

FIGURE A14. Run Graph 

Running a pipeline in Jupyter Notebook 
Before beginning this tutorial, download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials. 

 Create a Jupyter Notebook. 

 Connect to the Notebook, and then click New Terminal. 

 Clone the kubeflow/pipelines repo: 

$ git clone https://github.com/kubeflow/pipelines.git 
  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://github.com/kubeflow/pipelines.git


Reference Architecture Page 88 

 

 

 Return to theFiles tab, and then open the Notebook: 
$ pipelines/sam ples/core/lightweight_component.ipynb 

 

FIGURE A15. Lightweight Component Notebook 

 Execute each cell in the Notebook until it is finished. 

 Follow the Notebook link to the created experiment in the Pipelines interface. 

 
 

 Follow the Notebook link to the created run in the Pipelines interface. 

 

FIGURE A16. Calc Pipeline Run 



Reference Architecture Page 89 

 

 

 

FIGURE A17. Run Details 

Here are some general pipeline viewing steps from the Pipelines Dashboard interface: 

 Open the Experiments page in the Pipelines dashboard. 

 

FIGURE A18. Experiments Dashboard 



Reference Architecture Page 90 

 

 

 In the All experiments tab, expand the Default group, and then view the pipeline graph and details per step by clicking the appropriate (view 
pipeline) link. 

 In the All runs tab, click the name of the run to view the Graph, Run output, and Config tabs. 

 

FIGURE A19. Pipeline Run Graph 

Katib Hyperparameter Tuning 
Example 1: TensorFlow 

 Download the Kubeflow tutorials zip file which contains sample files for all of the included Kubeflow tutorials. 

 Edit the  tensorflow-example.yaml to put the following on the pod template. 

metadata: 
 annotations: 
  sidecar.istio.io/inject: "false" 
 

 Deploy the example. 
$ kubectl apply -f tensorflow-example.yaml 

 Open the Kubeflow Dashboard, and then select Katib. 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 91 

 

 

 Click the left menu button, and then go to HP → Monitor. 

 

FIGURE A20. Katib HP Monitor 

 Click the experiment name, and then observe the running trials. 

 Check the experiment status: 
$ kubectl get experiment 

 
 

  



Reference Architecture Page 92 

 

 

 Check the experiment trials. 

$ kubectl get trial 

 

 

FIGURE A21. Katib HP Tuning 



Reference Architecture Page 93 

 

 

Example 2: Random algorithm 
The following hyperparameters can be tuned:  

--lr - learning rate 
--num-layers - Number of layers in the neural networks 
--optimizer  
 

To launch an experiment using the random algorithm example: 

 Download the kubeflow-tutorials.zip (link opens an external website in a new browser tab/window). 

 Edit random-example.yaml to put the following on the pod template. 

metadata: 
 annotations: 
  sidecar.istio.io/inject: "false" 

 
 Deploy the example: 

$kubectl apply -f random-example.yaml 

This example embeds the hyperparameters as arguments. Hyperparameters can be embedded in other ways (e.g. by using environment 
variables) by using the template defined in the TrialTemplate, GoTemplate, and RawTemplate section of the yaml file. The template uses the Go 
template format (link opens an external website in a new browser tab/window). 

This example randomly generates the following hyperparameters: 

--lr - Learning rate (type: double). 
--num-layers - Number of layers in the neural network (type: integer). 
--optimizer - Optimizer (type: categorical). 
 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/


Reference Architecture Page 94 

 

 

 Check the experiment status: 

$ kubectl describe experiment random-example 

 

Example 3: PyTorch 
1. Download the Kubeflow tutorials zip file which contains sample files for all of the included Kubeflow tutorials. 

2. Edit the YAML to point to put the following on the pod template. 

metadata:D 
 annotations: 
  sidecar.istio.io/inject: "false" 
 

3. Deploy the example. 
$ kubectl apply -f pytorch-example.yaml 

 Go to the Katib page. 

 Click the Menu button, and then select HP → Monitor. 

  

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 95 

 

 

 Click the experiment name, and then observe the trials running. 

 

FIGURE A22. Pytorch Job Experiment 

 Check the experiment status. 
$ kubectl get experiment 

 Use the following command to check the trials of the experiment. 
$ kubectl get trial 

 

Sample Katib commands 
To check experiment results via thekub ectl CLI. 

• List experiments 

$ kubectl get experiment 
 

• Check experiment result 

$ kubectl get experiment random-example -o yaml 
 

• List trials 

$kubectl get trials 
 

• Check trial detail 

$ kubectl get trials random-experiment-24lgqghm -o yaml 
 

  



Reference Architecture Page 96 

 

 

To check the status using the interface: 

 Go to the Katib page. 

 Click the Menu button, and then select HP → Monitor. 

 Click the experiment name and observe the built experiment graph after all the trials have succeeded. 

Argo workflows 
Download the kubeflow_tutorials.zip file, which contains sample files for all of the included Kubeflow tutorials. 

This article provides the following two examples: 

• Simple workflow 

• Parallel execution workflow 

Simple workflow 
To complete the simple workflow: 

 Create and apply the Argo workflow in the profile namespace. 

 Obtain argo-hello-world.yaml from the zip file mentioned above. 

$ kubectl apply -f argo-hello-world.yaml 
workflow.argoproj.io/hello-world created 

 
 Verify that the workflow was created: 

$ kubectl get wf 
NAME           AGE 
hello-world       41m 
parallelism-nested-dag  12d 
 

 Verify that the related hello-world pod was created and is running. 

$ kubectl get pods hello-world 
NAME     READY  STATUS   RESTARTS  AGE 
hello-world  0/2   Completed  0     49m 

 

 Open the Argo interface by navigating to: 
http://<kubeflow_url>/argo/ 
http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/ 

 

 To remove the workflow: 

$ kubectl delete wf hello-world 
workflow.argoproj.io "hello-world" deleted 

 

 

Parallel execution workflow 
To complete the parallel execution workflow: 

 Create and apply the nested Argo workflow in the profile namespace. 

 Obtain argo-parallel-nested.yaml from the zip file mentioned above. 

$ kubectl apply -f argo-parallel-nested.yaml 
workflow.argoproj.io/parallelism-nested-dag configured 

 Verify that pods were created, as per the template (Observe the .yamlfil  the template). 

https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip
https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/tutorials/kubeflow/Tutorial_Argo_Workflows.html#v52_k8s-tutorial-argo-workflows__simple
https://docs.containerplatform.hpe.com/53/reference/kubernetes/using-kubernetes/general-functionality/tutorials/kubeflow/Tutorial_Argo_Workflows.html#v52_k8s-tutorial-argo-workflows__parallel
http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/
http://docs.bluedata.com/52_k8s-tutorial-argo-workflows$parallel


Reference Architecture Page 97 

 

 

 Open the Argo interface by navigating to: 

http://<kubeflow_url>/argo/ 
http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/ 

 

ML metadata 
Before beginning this tutorial, download the Kubeflow tutorials zip file which contains sample files for all of the included Kubeflow tutorials. 

 Create a Jupyter notebook server with any of the default images. 

 Connect to the created notebook server and upload the following notebook: demo-ml.ipynb. 

 

FIGURE 63. Demo-ml 

 Run the notebook step by step, and observe the result on the Pipelines → Artifacts page in the Kubeflow UI. 

 

FIGURE A23. Artifacts 

  

http://ezam-01.perflab.hp.com:10053/?ns=imageadmin/argo/
https://docs.containerplatform.hpe.com/53/attachments/5.2/kubeflow_tutorials_5_3.zip


Reference Architecture Page 98 

 

 

 Click the name of each item to view detailed information. Click the Execution tab on the left and see the details. 

 

FIGURE A24. Executions 

  



Reference Architecture Page 99 

 

 

APPENDIX B: HPE ML OPS KDAPP 
Centos/Ubuntu 
In the Applications screen, launch Centos/Ubuntu app with the required resources screen, launch Centos/Ubuntu app with the required 
resources. 

 

FIGURE B1. Launching KDAPP CentOS 

 ssh-keygen in webterm and copy id_rsa.pub. 

 

  



Reference Architecture Page 100 

 

 

 Exec into the centos pod and run ssh-keygen. 

 

 Vi /root/.ssh/authorized_keys, paste the id_rsa.pub that was copied, and exit. 

 

 ssh to the Access Points. 

 

FIGURE B2. CentOS Access Points 

 

MLflow 
MLflow is an open-source platform to manage the machine learning lifecycle, including experimentation, reproducibility, deployment, and a 
central model registry. For MLflow integration in the HPE Ezmeral Runtime details, see MLflow for Model Management. See MLflow 
Configuration and Deployment for the process to execute one run of MLflow from training to deployment. The user can clone the MLflow 
notebook used in this tutorial from https://github.com/pcao11/mlflow.git. 

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/mlflow_concepts.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/mlflow_configuration_and_deployment.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/mlflow_configuration_and_deployment.html
https://github.com/pcao11/mlflow.git


Reference Architecture Page 101 

 

 

 Generate and apply the MLflow Secret (See the HPE Ezmeral Container Platform 5.3 Documentation for the details). 

 

 Create an MLflow App Instance by attaching the mlflow secret (See the HPE Ezmeral Container Platform 5.3 Documentation for the details). 

 

FIGURE B3. Launching MLflow App Instance 

  

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/generate_mlflow_secret.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/attach_secret_and_launch_kubedirector_mlflow_app.html


Reference Architecture Page 102 

 

 

 Create a Training Application Instance. See the HPE Ezmeral Container Platform 5.3 Documentation for details (optional). 

 

FIGURE B4. Create Training Cluster 

 Launch and configure the Notebook (See the HPE Ezmeral Container Platform 5.3 Documentation for more details). 

 

FIGURE B5. Create MLflow Notebook 

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/optional_launch_training_toolkit_application.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/optional_launch_notebook_with_attachments.html


Reference Architecture Page 103 

 

 

 Enable kubectl to run MLflow backend (mandatory). Set the experiment name, Train, and track models. 

 

 Observe experiments, runs, metrics, parameters, dependency, and trained models in the MLflow UI. 

 

FIGURE B6. MLflow Experiment, Run 

  



Reference Architecture Page 104 

 

 

 

FIGURE B7. Dependency and Trained Model 

 Register Model for MLflow (See the HPE Ezmeral Container Platform 5.3 Documentation for details). 

 

FIGURE B8. Register Model 

  

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/register_model_for_mlflow.html


Reference Architecture Page 105 

 

 

 Create an MLflow Model Serving (See the HPE Ezmeral Container Platform 5.3 Documentation for details). 

 

FIGURE B8. MLflow Model Serving 

 Copy Access Points and Auth Token. 

 

 Making Prediction Calls (See the HPE Ezmeral Container Platform 5.3 Documentation for details). 

 

  

https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/deploy_mlflow_model_on_seldon_mlflow_server.html
https://docs.containerplatform.hpe.com/53/reference/kubernetes/kubernetes-administrator/MLflow/making-prediction-calls.html


Reference Architecture Page 106 

 

 

NVIDIA: TensorFlow (NGC) 
 Create an NVIDIA TensorFlow (NGC) App Instance. 

 

FIGURE B9. Launching NVIDIA TensorFlow (NGC) App Instance 

 Login inside the pod to run TensorFlow jobs with GPU. 

 

  



Reference Architecture Page 107 

 

 

TensorFlow + Jupyter 
 Create a TensorFlow + Jupyter App Instance. 

 

FIGURE B10. Launching TensorFlow + Jupyter App Instance 

 Click the access points of the created App Instance. 

 

FIGURE B11. Access Points of TensorFlow + Jupyter 

  



Reference Architecture Page 108 

 

 

 Exec into the TensorFlow +Jupyter pod and run jupyter notebook list and copy the token. 

 

FIGURE B12. Copy the token 

 Paste the copied token and login to TensorFlow + Jupyter notebook. 

 

FIGURE B13. Login to TensorFlow + Jupyter Notebook 

  



Reference Architecture Page 109 

 

 

 Now launch the notebook and run TensorFlow with GPU 

 

FIGURE B14. Python3 Notebook 

APPENDIX C: INSTALL AND CONFIGURE HPE EZMERAL RUNTIME 
Follow the steps as outlined to install and configure the HPE Ezmeral Runtime. This section assumes that all the prerequisites mentioned in the 
earlier sections were followed. See the Standard Installation procedure. 

 

https://docs.containerplatform.hpe.com/53/reference/deploying-the-platform/phase-3/step-1--cli/Standard_Installation.html


Reference Architecture 

 

 © Copyright 2022- 2023 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change 
without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty 
statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. 
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein. 

Intel and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. NVIDIA, the NVIDIA logo, 
are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries.. Microsoft and Windows are 
trademarks of Microsoft Corporation in the United States and/or other countries. © 2012 Google Inc. All rights reserved. Google 
and the Google Logo are registered trademarks of Google Inc. All third-party marks are property of their respective owners.  

a50006296enw, version 1.0, May 2023  

 

RESOURCES AND ADDITIONAL LINKS 
HPE Reference Architectures, hpe.com/info/ra 

HPE Servers, hpe.com/servers 

HPE Storage, hpe.com/storage 

HPE Networking, hpe.com/networking 

HPE Technology Consulting Services, hpe.com/us/en/services/consulting.html 

HPE Ezmeral Machine Learning Ops, https://buy.hpe.com/us/en/enterprise-solutions/artificial-intelligence-analytics/artificial-intelligence-
analytics/artificial-intelligence-analytics/hpe-ezmeral-machine-learning-ops/p/1011947349 

Operationalization for the Machine Learning Lifecycle live demonstration, 
https://hpedemoportal.api.ext.hpe.com/DemoPortal/api/DocContent/GetDocByToken/26858daf-c14b-49f0-ae8f-60d3e7423e66 

HPE Ezmeral ML Ops, https://assets.ext.hpe.com/is/content/hpedam/documents/a50000000-0999/a50000137/a50000137enw.pdf 

Kubeflow Introduction, https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/ 

https://v0-5.kubeflow.org/docs/use-cases/ 

Broadcom AIOps, https://www.broadcom.com/sw-tech-blogs/aiops-blog/what-is-prometheus#:~:text=Prometheus%20is%20a%20time-
series%20streaming%20data%20tool.%20It,make%20that%20data%20available%20for%20processing%20and%20analysis 

HPE Ezmeral Container Platform 5.3 Documentation, https://docs.containerplatform.hpe.com/53/index.html  

 

To help us improve our documents, please provide feedback at hpe.com/contact/feedback. 

 

http://www.hpe.com/info/ra
http://www.hpe.com/servers
http://www.hpe.com/storage
http://www.hpe.com/networking
http://www.hpe.com/us/en/services/consulting.html
https://buy.hpe.com/us/en/enterprise-solutions/artificial-intelligence-analytics/artificial-intelligence-analytics/artificial-intelligence-analytics/hpe-ezmeral-machine-learning-ops/p/1011947349
https://buy.hpe.com/us/en/enterprise-solutions/artificial-intelligence-analytics/artificial-intelligence-analytics/artificial-intelligence-analytics/hpe-ezmeral-machine-learning-ops/p/1011947349
https://hpedemoportal.api.ext.hpe.com/DemoPortal/api/DocContent/GetDocByToken/26858daf-c14b-49f0-ae8f-60d3e7423e66
https://assets.ext.hpe.com/is/content/hpedam/documents/a50000000-0999/a50000137/a50000137enw.pdf
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://www.broadcom.com/sw-tech-blogs/aiops-blog/what-is-prometheus#:%7E:text=Prometheus%20is%20a%20time-series%20streaming%20data%20tool.%20It,make%20that%20data%20available%20for%20processing%20and%20analysis
https://www.broadcom.com/sw-tech-blogs/aiops-blog/what-is-prometheus#:%7E:text=Prometheus%20is%20a%20time-series%20streaming%20data%20tool.%20It,make%20that%20data%20available%20for%20processing%20and%20analysis
https://docs.containerplatform.hpe.com/53/index.html
http://www.hpe.com/contact/feedback

	Executive summary
	Solution overview
	Solution components
	HPE Ezmeral Runtime
	Key features

	Kubernetes features on HPE Ezmeral ML Ops
	Kubernetes architecture with HPE Ezmeral Runtime

	HPE Ezmeral ML Ops
	Kubeflow for Pipeline Management
	Spark within HPE Ezmeral Runtime


	Best practices
	HPE EPA Platform configuration for HPE Ezmeral Runtime
	HPE Apollo 2000 Gen10 Plus Compute Servers
	HPE Apollo 6500 Gen10 Plus GPU System

	HPE and NVIDIA GPUs
	HPE Intelligent System Tuning (IST)

	Storage
	Ephemeral Storage (Node Storage)
	Persistent Storage
	Tenant Storage for Local Data Access
	Operating system storage
	HPE Ezmeral Runtime storage recommendations

	Networking

	Kubeflow with HPE Ezmeral ML Ops
	Kubeflow conceptual overview
	Katib hyperparameter tuning
	Argo Workflow
	Istio Prometheus

	HPE Ezmeral ML Ops use cases
	Software components
	Hardware components
	Use case NYC taxi rides
	Persona: Kubernetes Administrator
	LDAP/AD Administrator (For Jupyter Notebook KDapp use)
	Persona: Kubernetes project administrator
	Persona: Kubernetes project member (Data Scientist)

	Use case on Pima Indian's diabetes prediction
	Model development (Part 1)
	Model development (Part 2)


	Ezmeral ML Ops - in action with use case (Spark operator)
	Spark operator with K8s
	Prerequisites
	System requirements
	AD/LDAP authentication requirements
	Preparing the environment

	Spark operator use case
	Model training from KubeDirector Notebook using Spark with Livy

	Ezmeral ML Ops – Experiment tracking with MLflow
	Prerequisite
	Use case workflow
	MLflow Server


	Monitoring
	Kubernetes administrator
	Kubernetes tenant/project administrator
	Istio and Prometheus
	Istio Prometheus use case


	Summary
	Appendix A: Kubeflow and tests of use cases
	KubeFlow components
	Kubeflow components use cases GitHub issue summarization - Training with Jupyter
	GitHub issue summarization – Serving with Seldon
	Training with TensorFlow (Financial series)
	Serving a TensorFlow model with KFServing (Financial series)
	Training a PyTorch model (PyTorch MNIST)
	Additional information

	Sample Pipeline in the pipelines interface
	Running a pipeline in Jupyter Notebook
	Katib Hyperparameter Tuning
	Sample Katib commands

	Argo workflows
	Simple workflow
	Parallel execution workflow

	ML metadata

	Appendix B: HPE ML Ops KDapp
	Centos/Ubuntu
	MLflow
	NVIDIA: TensorFlow (NGC)
	TensorFlow + Jupyter

	Appendix C: Install and configure HPE Ezmeral Runtime
	Resources and additional links

