
OverlandTandberg.com

WHITE PAPER

Titan T5000
Unisphere® Management

REST API Programmer's Guide

© Dell Technologies

Dell EMC Unity™ Family
Unisphere® Management REST API Programmer's

Guide

5.1

Regulatory Model: P/N 302-002-579
June 2021
Rev. 05

Notes, cautions, and warnings

NOTE: A NOTE indicates important information that helps you make better use of your product.

CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid

the problem.

WARNING: A WARNING indicates a potential for property damage, personal injury, or death.

© 2016 - 2021 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries.
Other trademarks may be trademarks of their respective owners.

Additional resources... 5

Chapter 1: Welcome.. 6
The Unisphere Management REST API... 6
Examples in this guide.. 6

Chapter 2: REST API overview...7
Resource-oriented architecture and REST... 7
JSON data exchange format.. 7

Chapter 3: JSON request components...9
HTTP request headers... 9
Request parameters.. 10
URI patterns.. 14
Request body.. 18

Chapter 4: JSON response components... 19
HTTP response headers... 19
JSON response body..20
HTTP status codes.. 21
Collection resource... 22
Instance resource.. 24
Minimal instance resource...24
Empty response body...25
Job resource instance.. 25
Message entity...26

Chapter 5: JSON encodings...28
JSON base value encodings... 28
JSON list encoding... 29

Chapter 6: Preparing to make a request...31
Connecting and authenticating...31
Retrieving basic system information...33

Chapter 7: Querying a resource... 34
Retrieving data for multiple occurrences in a collection..34
Retrieving data for a specified resource instance...36
Omitting metadata from responses.. 38
Specifying the attributes to return in a query response..39
Paginating response data...41
Filtering response data...45
Sorting response data..50
Aggregating response data...52

Contents

Contents 3

Defining new attributes from existing attributes.. 54
Extending queries to include related data...60
Localizing response text..63

Chapter 8: Creating other types of requests... 66
Creating a resource instance... 66
Modifying a resource instance... 67
Deleting a resource instance.. 69
Performing a class-level resource-specific action... 71
Performing an instance-level resource-specific action..72
Creating an aggregated management request...75
Working with asynchronous requests...77

Chapter 9: Downloading and uploading files.. 80
Downloading and uploading NAS server configuration files... 80
Downloading and uploading x.509 certificates.. 84
Downloading configuration capture files... 86
Downloading service information files..87
Downloading import session report files..88
Downloading Data at Rest Encryption files...88
Uploading upgrade candidates and language packs.. 91
Uploading license files.. 92

Chapter 10: Perl example...94
Example of creating multiple standalone LUNs... 94

4 Contents

As part of an improvement effort, revisions of the software and hardware are periodically released. Therefore, some functions
described in this document might not be supported by all versions of the software or hardware currently in use. The product
release notes provide the most up-to-date information on product features. Contact your technical support professional if a
product does not function properly or does not function as described in this document.

Where to get help
Support, product, and licensing information can be obtained as described below.

Product information
For product and feature documentation or release notes, go to Unity Technical Documentation at: dell.com/unitydocs.

Troubleshooting
For information about products, software updates, licensing, and service, go to Support (registration required) at: dell.com/
support. After logging in, locate the appropriate product page.

Preface

Additional resources 5

https://www.dell.com/unitydocs
https://www.dell.com/support
https://www.dell.com/support

Welcome

Topics:

• The Unisphere Management REST API
• Examples in this guide

The Unisphere Management REST API
The Unisphere Management REST API is a set of objects (resources), operations, and attributes that let you interact with
Unisphere Management functionality through web browsers and application programs. You can use the REST API to do all of the
following:

● Configure system settings for the storage system.
● Manage the connections to remote systems, including manage host configurations, iSCSI initiators, and iSCSI CHAP

accounts.
● Configure network communication, including manage NAS Servers and set up iSNS for iSCSI storage.
● Manage storage, including configure storage pools and manage file systems, iSCSI, VMware, and Hyper-V storage resources.
● Protect data, including manage snapshots and replication sessions.
● Manage events and alerts.
● Service the system, including change the service password, manage EMC Secure Remote Support (ESRS) settings, and

browse service contract and technical advisory information.

For more information about Unisphere Management REST API functionality, see the Unisphere Management REST API
Reference Guide, which is available from the storage system at https://<ip>/apidocs/index.html and is also available
on the support website.

The Unisphere Management API uses a Representational State Transfer (REST) architecture style to expose data. REST is a
common approach in today's IT management products and a frequent choice for many web-based APIs. Using a REST API
provides the following advantages:

● Presents a single, consistent interface to the Unisphere Management functionality.
● Requires no additional tools, other than standard web browsers or command-line HTTP tools, such as wGET and cURL. For

complex interactions, clients can use any procedural programming language, such as C++ or Java, or scripting language, such
as Perl or Python, to make calls to the REST API.

● Uses well known HTTP conventions in a standard manner to interact with the storage system.
● Is easy to transport in the network. REST API traffic looks and acts like standard HTTP network traffic, and requires no

special ports open in the firewall or special settings in the switches.

Examples in this guide
Most of the examples in this guide are examples in which the REST API is accessed through a browser plugin. To see an example
of using the REST API with a Perl script, see Example of creating multiple standalone LUNs.

NOTE: The attributes in the example response text may differ from the response text you receive when running the same

request.

1

6 Welcome

REST API overview

Topics:

• Resource-oriented architecture and REST
• JSON data exchange format

Resource-oriented architecture and REST
REST is a client-server architectural style that uses the HTTP protocol in a simple, effective, way. REST is based on the
following principles:

● Application state and functionality are organized into resources. Resources represent physical things, such as a specific
Storage Processor (SP); logical things, such as a specific alert; or collections of entities, such as the physical disks in the
storage system.

● Each resource has a unique Universal Resource Identifier (URI), and each resource instance has a unique ID. For example,
you can identify the alert collection with this URI: /api/types/alert/instances. And you can identify the alert
instance that has an ID of 201 with this URI: /api/instances/alert/201.

● Resources share a uniform interface between the client and server through standard HTTP protocol operations. The
Unisphere Management API uses the HTTP GET operation to retrieve data about a resource collection or resource instance,
POST to create or modify a resource instance, and DELETE to delete a resource instance. (The API also uses POST for a
limited set of other operations to implement resource-specific actions) Thus, an application can interact with a resource by
knowing the URI pattern, resource identifier, and action required.

● Communication between the client and server occurs through HTTP requests and responses. In the Unisphere Management
API, requests and responses represent resource data using JavaScript Object Notation (JSON).

● Each request is stateless, which means that the server does not store application state information. Instead, client requests
contain all the information needed to service the request.

● Resources in a REST API are self-documenting. A response from the server contains information about the requested
resource in the form of attribute names and values. Some responses also contain HTML links that the user can use to
retrieve additional information about the resource.

Related concepts

JSON data exchange format

JSON data exchange format
JavaScript Object Notation (JSON) is a text-based, platform-independent data-exchange format that is easy for humans and
machines to read and write. It consists of two structures:

● A set of name:value pairs enclosed by curly brackets. The pairs may be metadata about the request, such as the time of the
request, or they may be data about a resource.

● A list of values enclosed by square brackets. This structure is used when the value in a name:value pair is an array.

The value in a name can be a simple value, such as a string or a number, or it can be either of the structures above (a list of
name:value pairs in curly brackets, or a list of values in square brackets).

The following example shows part of a response body for a GET dnsServer collection request in JSON format. In this content,
the value for the addresses attribute is a list structure:

"content": {
 "origin": 1,
 "addresses": [
 "10.254.177.14",
 "10.255.134.14"
],

2

REST API overview 7

 "id": "0"
 }
 }
]
 }

For more information about JSON, see json.org.

Related concepts

Resource-oriented architecture and REST

8 REST API overview

HTTP://WWW.JSON.ORG/

JSON request components

Topics:

• HTTP request headers
• Request parameters
• URI patterns
• Request body

HTTP request headers
The following table describes the HTTP request headers that are used by the Unisphere Management REST API. The API uses
these headers in standard ways.

HTTP header Value Description

Accept: application/json;
version=<n.n>
where <n.n> is the version number for
the desired response.

Format and version of the body content
desired in the response.

All requests use Accept:
application/json, which is the
default and only value accepted. If the
Accept header is not specified, the
system defaults to the current version.

If the client requests a version that
the server does not support, the server
returns an error. If the client requests
multiple versions, the server returns
the latest supported version that was
requested.

Accept-language: Locale name Localization language for error response
messages, events, alerts, and other
localizable query results.

Valid values are:

● de-DE: German

● en-US: English (default)

● es-MX: Latin American Spanish

● fr-FR: French

● ja-JP: Japanese

● ko-KR: Korean

● pt-BR: Brazilian Portuguese

● ru-RU: Russian

● zh-CN: Chinese

NOTE: Support for all supported
locales except en-US requires the
installation of language packs.

If the requested dialect is not available,
the API tries to match on the language,
alone. For example, de-AA will match
with de-DE.

3

JSON request components 9

HTTP header Value Description

If the API cannot find a match, it uses
en-US instead of returning an error
message.

For more information, see Localizing
response text.

Content-type: application/json Body content type of the request.

Set-Cookie: Login session ticket Because the API uses cookie-based
authentication, the HTTP client must
support cookies in order to use the API.
More than one cookie may be required to
use the REST API.

For more information, see Connecting
and authenticating.

EMC-CSRF-TOKEN: <token> CSRF token used to mitigate Cross-
Site Request Forgery vulnerabilities. The
token is gathered from a GET response
and required to send with POST and
DELETE requests. The token is good for
the entirety of the session.

For more information, see Connecting
and authenticating.

X-EMC-REST-CLIENT: true Required to send in all requests if using
Basic authentication.

For more information, see Connecting
and authenticating.

Application-Type: <plugin name>/<plugin
version>

Optional. REST client name and version.

Related references

URI patterns

Request parameters

Request body

Related tasks

Connecting and authenticating

Request parameters
The REST API supports the following request parameters:

Request parameter Applicable request types Description

compact Collection query and instance query
requests

Omits metadata from each instance in
the query response. Values are:
● true (implied when you use

&compact without a value)
● false (default)

For more information, see Omitting
metadata from responses.

10 JSON request components

Request parameter Applicable request types Description

fields Collection query and instance query
requests

Specifies a comma-separated list of
attributes to return in a response. If you
do not use this parameter, a query will
return the id attribute only.

When using fields, you can:

● Use dot notation syntax to return the
values of related attributes.

● Optionally, define a new attribute
from field expressions associated
with one or more existing attributes.

For more information, see Specifying the
attributes to return in a query response,
Extending queries to include related
data, and Defining new attributes from
existing attributes.

filter Collection query request Filters the response data against a
set of criteria. Only matching resource
instances are returned. Filtering is case
insensitive.

When using filter, you can use dot
notation syntax to filter by the attributes
of related resource types.

For more information, see Filtering
response data and Extending queries to
include related data.

groupby Collection query request Groups the specified values and applies
the @sum function to each group.

For example, you could use groupby
with @sum to return a summary of disk
sizes for each disk type.

For more information, see Aggregating
response data.

language All request types Overrides the value of the Accept-
language: header. This is useful for
testing from a plain browser or from an
environment where URL parameters are
easier to use than HTTP headers.

The language parameter specifies the
localization language for error messages,
events, alerts, and other localizable
responses.

Valid values are:

● de-DE: German

● en-US: English (default)

● es-MX: Latin American Spanish

● fr-FR: French

● ja-JP: Japanese

● ko-KR: Korean

● pt-BR: Brazilian Portuguese

● ru-RU: Russian

● zh-CN: Chinese

JSON request components 11

Request parameter Applicable request types Description

For more information, see Localizing
response text.

orderby Collection query request Specifies how to sort response data.
You can sort response data in ascending
or descending order by the attributes
of the queried resource type. And you
can use dot notation syntax to sort
response data by the attributes of
related resource types.

For more information, see Sorting
response data and Extending queries to
include related data.

page Collection query request Identifies the page to return in a
response by specifying the page number.
If this parameter is not specified, the
server returns all resource instances that
meet the request criteria in page 1.

For more information, see Paginating
response data.

per_page Collection query request Specifies the number of resource type
instances that form a page. If this
parameter is not specified, the server
returns all resource instances that meet
the request criteria in the page specified
by page (or in page 1, if page is also not
specified).

NOTE: The server imposes an upper
limit of 2000 on the number of
resource instances returned in a
page.

For more information, see Paginating
response data.

with_entrycount Collection query request Indicates whether to return the
entryCount response component in
the response data. The entryCount
response component indicates the
number of resource instances in the
complete list. You can use it to get
the total number of entries when paging
returned a partial response.

By default, the entryCount response
component is not returned. Set
with_entrycount=true to return
the entryCount response component.

For more information, see Paginating
response data.

timeout Most non-GET requests Executes the request in the background.
Most active management requests
(ones that attempt to change the
configuration) support this option. The
documentation for each API method in
the Unisphere Management REST API
Reference Guide specifies whether the
method supports this option.

12 JSON request components

Request parameter Applicable request types Description

For more information, see Working with
asynchronous requests.

To use request parameters, append the parameters to the request URI. The first request parameter appended to the URI begins
with a ? character. Additional request parameters begin with & instead of ?. You can combine request parameters and can use
them in any order. If a request parameter is repeated, all but the last one is ignored.

Example 1

The following request uses a fields query parameter to return the name, and rpm attributes, a filter query parameter
to return disk instances that have an RPM of 15000, and a compact query parameter to omit metadata from each instance
in the query response. It also sets the with_entrycount query parameter to true, so that the entry count is included in
the response data. For readability purposes, this example omits URI encoding for the space character (%20) and % character
(%25).

Request

GET api/types/disk/instances?fields=rpm,name&filter=rpm eq
15000&compact=true&with_entrycount=true

Response

 {
 "@base": "https://10.108.53.216/api/types/disk/instances?filter=rpm eq
15000&fields=rpm,name,id&per_page=2000&compact=true",
 "updated": "2015-12-02T21:03:14.446Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entryCount": 20,
 "entries": [
 {
 "content": {
 "id": "dpe_disk_0",
 "name": "DPE Disk 0",
 "rpm": 15000
 }
 },
 {
 "content": {
 "id": "dpe_disk_1",
 "name": "DPE Disk 1",
 "rpm": 15000
 }
 },
 {
 "content": {
 "id": "dpe_disk_2",
 "name": "DPE Disk 2",
 "rpm": 15000
 }
 },
.
.
.

Example 2

The following request uses the per_page and page query parameters to group returned disk instances into chunks of
two instances per page and to return only the instances on page three. It also uses fields query parameter to return the

JSON request components 13

name, pool and tierType attributes, and the compact query parameter to omit metadata from each instance in the query
response:

Request

GET api/types/disk/instances?per_page=3&page=2&fields=name,pool,tierType&compact=true

Response

{
 "@base": "https://10.245.23.125/api/types/disk/instances?
fields=name,tierType,id,pool.id&per_page=3&compact=true",
 "updated": "2015-11-19T22:47:53.424Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=2"
 }
],
 "entries": [
 {
 "content": {
 "id": "dae_0_1_disk_3",
 "tierType": 20,
 "name": "DAE 0 1 Disk 3",
 "pool": {
 "id": "pool_1"
 }
 }
 },
 {
 "content": {
 "id": "dae_0_1_disk_4",
 "tierType": 20,
 "name": "DAE 0 1 Disk 4",
 "pool": {
 "id": "pool_1"
 }
 }
 },
 {
 "content": {
 "id": "dae_0_1_disk_5",
 "tierType": 20,
 "name": "DAE 0 1 Disk 5",
 "pool": {
 "id": "pool_1"
 }
 }
 }
]
}

Related references

HTTP request headers

URI patterns

Request body

URI patterns
In a REST API, the client sends Uniform Resource Identifiers (URIs) to the server. Each URI acts as a template for which you
specify a resource type, ID, and desired action.

14 JSON request components

Basic URI patterns

The following table describes the basic URI patterns that the Unisphere Management REST API supports:

Table 1. Basic URI patterns in the REST API

URI pattern HTTP Operations Description

Collection type resource URI

/api/types/<resourceType>/
instances

GET Retrieves a list of instances for the specified resource type.

For more information, see Retrieving data for multiple
occurrences in a collection.

POST Creates a new instance of the specified resource type, using
data specified in the request body, if allowed.

For more information, see Creating a resource instance.

Instance resource URI

For all resource types:

/api/instances/
<resourceType>/<id>
For applicable resource types:

/api/instances/
<resourceType>/
name:<assignedName>

GET Retrieves the specified resource instance.

For more information, see Retrieving data for a specified
resource instance.

NOTE: To see if a resource type can be identified
by the user-assigned name, see the individual resource
type topics in the Unisphere Management API Reference
Guide.

DELETE Deletes the specified resource instance, if allowed.

For more information, see Deleting a resource instance.

NOTE: To see if a resource type can be identified
by the user-assigned name, see the individual resource
type topics in the Unisphere Management API Reference
Guide.

Instance action URI

For all resource types:

/api/instances/
<resourceType>/<id>/action/
<actionName>
For applicable resource types:

/api/instances/
<resourceType>/
name:<assignedName>/action/
<actionName>

POST Performs the action specified in /action/<actionname>
for the specified resource instance. For example, a URI
pattern containing /action/modify directs the system to
modify the specified resource instance.

For more information, see Performing an instance-level
resource-specific action.

NOTE: To see the supported actions for a resource
type and whether the resource type can be identified
by the user-assigned name, see the individual resource
type topics in the Unisphere Management API Reference
Guide.

Class-level action URI

/api/types/<resourceType>/
action/<actionName>

POST Performs the action specified in action/<actionName>
for the specified non-singleton resource type. For example, a
URI pattern containing action/RecommendForInterface
for the ipPort resource type recommends ports on the SP
specified in the body of the request to use for creating iSCSI
NAS servers.

For more information, see Performing a class-level resource-
specific action.

For a list of supported class-level actions for a resource
type, see the individual resource type topics in the Unisphere
Management API Reference Guide.

JSON request components 15

URI patterns for downloading and uploading files

The following table describes the URI patterns for downloading and uploading files that the Unisphere Management REST API
supports:

URI pattern HTTP Operations Description

URI for downloading a NAS server
configuration file

/download/<protocolType>/
nasServer/<nasServerId>

GET Downloads a NAS server configuration file from the
specified NAS server to the local host.

For more information, see Downloading and uploading NAS
server configuration files.

URI for uploading a NAS server
configuration file

/upload/<protocolType>/
nasServer/<nasServerId>

POST Uploads a NAS server configuration file to the specified
NAS server. You must POST the NAS server configuration
file using a multipart/form-data format, as if from a simple
web page.

For more information, see Downloading and uploading NAS
server configuration files.

URI for downloading an x.509 certificate
file

/download/x509Certificate/
<cert_id>

GET Downloads the specified x.509 certificate file from the
storage system to the local host.

For more information, see Downloading and uploading x.509
certificates.

URI for uploading an x.509 certificate file

/upload/x509Certificate/
POST Uploads an x.509 certificate from the local host to the

storage system. You must POST the x.509 certificate file
using a multipart/form-data format, as if from a simple web
page.

For more information, see Downloading and uploading x.509
certificates.

URI for downloading the keystore file for
Data at Rest Encryption

/download/encryption/keystore

GET Downloads the keystore file for Data at Rest Encryption
from the storage system to the local host.

For more information, see Downloading Data at Rest
Encryption files.

URI for downloading the key manager
audit logs and checksum files for Data
at Rest Encryption

/download/encryption/
auditLogAndChecksum?
date=<YYYY-mm>

GET Downloads the key manager audit logs and checksum files
together as a single .zip file from the storage system to the
local host.

For more information, see Downloading Data at Rest
Encryption files.

URI for downloading the checksum file
for a specified key manager audit log

/download/encryption/
checksum?
audit_log=<audit_log_file_nam
e>GET

GET Downloads the checksum file for a specified audit log from
the storage system to the local host.

For more information, see Downloading Data at Rest
Encryption files.

URI for uploading upgrade candidates
and language pack files

/upload/files/types/
candidateSoftwareVersion

POST Uploads an upgrade candidate or language pack file from
the local host to the storage system. You must POST the
upgrade candidate or language pack file using a multipart/
form-data format, as if from a simple web page.

For more information, see Uploading upgrade candidates
and language packs.

URI for uploading license files

/upload/license
POST Uploads an upgrade candidate or language pack file from

the local host to the storage system. You must POST the
upgrade candidate or language pack file using a multipart/
form-data format, as if from a simple web page.

16 JSON request components

URI pattern HTTP Operations Description

For more information, see Uploading license files.

NOTE: To install an uploaded license file, create a new
instance of the license resource type.

Examples

Retrieving all
instances of the
user resource
type

GET /api/types/user/instances

Retrieving user
instance 001 GET /api/instances/user/001

Creating a new
user instance POST /api/types/user/instances

Deleting user
instance 001 DELETE /api/instances/user/001

Modifying user
instance 001 POST /api/instances/user/001/action/modify

Verifying
connectivity
from the storage
server to the
specified LDAP
server (an
instance-level
action)

POST /api/instances/ldapServer/server1/action/verify

Recommending
Ethernet ports to
use for creating
link aggregations
(a class-level
action)

POST /api/types/ethernetPort/action/RecommendForAggregation

Downloading
the vasa_http-
vc1-cacert-1
x.509 certificate
file to the local
host

GET /download/x509Certificate/vasa_http-vc1-cacert-1

Uploading a
license file to the
storage system

POST /api/upload/license

Related references

HTTP request headers

Request parameters

Request body

JSON request components 17

Request body
A JSON request body for the Unisphere Management REST API consists of a collection of name:value pairs for a single resource
type. The request body has the following syntax:

● For number or boolean values:

{
 <attributeName1>:<value1>,
 <attributeName2>:<value2>,
 .
 .
 .
}

● For IP, string, or datetime values:

{
 <attributeName1>:"<value1>",
 <attributeName2>:"<value2>",
 .
 .
 .
}

For example, the request body for a create request for the user resource type could contain the following values:

{
 "name": "June",
 "role": "operator",
 "password": "Operator_EMC1!"
}

Related references

HTTP request headers

URI patterns

Request parameters

18 JSON request components

JSON response components

Topics:

• HTTP response headers
• JSON response body
• HTTP status codes
• Collection resource
• Instance resource
• Minimal instance resource
• Empty response body
• Job resource instance
• Message entity

HTTP response headers
A response from the REST API always includes HTTP response headers that contain metadata about the response being sent.
The following HTTP headers appear in every REST API response:

Table 2. HTTP response headers in the REST API

HTTP header Description

Status Code HTTP status code that indicates whether the request was
successful.

Cache-Control Specifies whether the response can be cached and/or stored in
non-volatile storage. In this version of the REST API, the value
is always no-cache, nostore, max-age=0, which indicates
information should not be cached or stored.

Connection Specifies the preferred type of connection. In this version of the
REST API, the value is always Keep-Alive, which means the
client/server connection is left open for the length of time specified
in the Keep-Alive header.

Content-Language Indicates the language of the response content. If the language
specified in the request cannot be found, the language defaults to
en-US (US English).

Content-Type MIME type of the response. In this version of
the REST API, the value is always application/
json;version=4.0;charset=UTF-8.

Date Date and time when the response was sent.

EMC-CSRF-TOKEN Returned in the first GET request and required for subsequent
POST and DELETE requests.

Expires Date and time when the response information is considered to be
expired.

Keep-Alive The timeout parameter associated with the Keep-Alive header
specifies the length of time for which the server will keep the
client/server connection open between requests, in seconds. The
max parameter specifies the number of requests allowed per
connection. If set to 0, an unlimited number of requests are allowed.

4

JSON response components 19

Table 2. HTTP response headers in the REST API (continued)

HTTP header Description

Pragma Implementation-specific directives. In this version of the REST API,
the value is always no-cache, which indicates that the application
should forward the request to the origin server, even if it has a
cached copy of what was requested.

Server REST API server name. In this version of the REST API, the value is
always Apache.

Transfer-Encoding Indicates how the response was transmitted. In this version of the
REST API, the value is always chunked.

When you log into the REST API, the response also includes a Set-Cookie header, which contains information about the login
session. The response can include other cookies as well. You must include these cookies in each request that uses this login
session.

Related references

JSON response body

HTTP status codes

JSON response body
If a request to the REST API is successful, the JSON response body contains data that represents the requested resources. If a
request is unsuccessful, the response body contains a message entity. In both cases, the response body is a set of components
enclosed by outer braces, with each component formatted as a name:value pair.

The following table describes the response body components:

Component Description

"@base" Name of the base URI. The base URI is used at both the collection level and the instance
level.

"updated" Date and time the response was generated. The update time is used at both the collection
level and the instance level.

"links" List of one or more hyperlinks. Each hyperlink has two sub-components:
● "rel" - Relationship name.

● "href" - Link URI. This gets appended to the value of "@base" to create the full link.

The first hyperlink in a response body is the self-link to the requested resource, which
informs users how the data was retrieved. Subsequent hyperlinks in a response body are
related URIs that the user can use to retrieve additional information.

The hyperlinks are used at both the collection level and the instance level.

"entryCount" Number of instances in the complete list. This component is used at the collection level only,
and is only returned if the with_entrycount query parameter is set to true.

"entries" List of all instances in the current page of the specified collection that meet the request
criteria. This component is used at the collection level only.

"content" Set of name:value pairs for one resource. Not all requests return name:value pair content.

The format of a response body depends on how the request was processed and whether the request was successful. The REST
API supports the following types of response bodies:

● Collection resource
● Instance resource
● Minimal instance resource
● Empty response body
● Job resource instance

20 JSON response components

● Message entity

Related references

HTTP response headers

HTTP status codes

HTTP status codes
Every response to a REST API request includes an HTTP status code in the response header, which indicates whether the
request was successful. If requests are unsuccessful (that is, if they return 4nn and 5nn HTTP status codes) the system returns
a message entity that describes the problem.

The following table describes the HTTP status codes that apply to the REST API:

Table 3. HTTP status codes in the REST API

Status
code

Name Applies to Description

200 OK GET requests and action POST
requests with output data

Successful request.

For a GET request, the response body contains the
requested resource. For an action POST request,
the response body contains the output arguments.

201 Created POST requests for creating resources Successful request.

The response body contains the id attribute and
self-link for the new resource.

202 Accepted Asynchronous POST and DELETE
requests

Request is in process.

The response body is the job resource instance
executing the request.

204 No Content Action POST requests with no output
data and DELETE requests

Successful request.

There is no body content in the response.

302 Unauthorized All requests Authorization error or timeout when the X-EMC-
REST-CLIENT header field is missing or not set to
true.

400 Bad Request GET, POST, and DELETE requests Request syntax error.

The request has a badly formed URI or badly
formed parameters, headers, or body content.

401 Unauthorized All requests Authorization error or timeout when the X-EMC-
REST-CLIENT header field is set to true.

403 Forbidden GET, POST, and DELETE requests Not allowed.

This is an authentication or authorization failure.

404 Not Found GET, POST, and DELETE requests Resource does not exist.

This can be caused by:

● An invalid resource type name for a GET
instance request or action POST request.

● An invalid ID for a specific instance in a GET,
POST, or DELETE request.

● An invalid URI pattern.

405 Method Not
Allowed

POST and DELETE requests Specified resource does not support the request's
operation.

JSON response components 21

Table 3. HTTP status codes in the REST API (continued)

Status
code

Name Applies to Description

For example, requesting a DELETE on a hardware
resource can cause this error.

406 Not
Acceptable

GET, POST, and DELETE requests Accept headers cannot be satisfied.

409 Conflict GET, POST, and DELETE requests Request cannot be completed due to a conflict with
the current state of the resource.

The response body contains an error message that
describes the problem with the request.

422 Unprocessable
Entity

POST requests POST request has semantically invalid content. For
example, a range error or inconsistent properties on
a POST can cause this error.

The response body contains an error message that
describes the problem with the request.

500 Internal
Server Error

GET, POST, and DELETE requests Internal error.

503 Service
Unavailable

GET, POST, and DELETE requests The REST service is temporarily unavailable.

Related references

HTTP response headers

JSON response body

Collection resource
A collection resource occurs in response to a GET collection request that results in a 200 OK HTTP status code. By default,
the response body for a list contains the id for all instances in the resource type collection. You can specify additional fields
to return by using the ?fields query parameter. You also can limit the amount of data returned by using the ?page, ?
per_page, ?filter, and ?compact query parameters.

The following example illustrates the components of a collection resource. It shows a collection resource returned in response
to a GET collection request for the alert resource type. In this example, the query returns the id, severity, and
description of each alert in the storage system. Paging is set to 10 instances per page. Spaces outside the quoted strings
are used for readability, and are not significant.

Request

GET https://10.245.23.125/api/types/alert/instances
 ?fields=severity,description?per_page=10

Response

{
 "@base": "https://10.245.23.125/api/types/alert/instances?fields=severity,description
?per_page=10,id&per_page=2000"

Collection base URI and paging specification for this response. All links within this scope use this base URI. The per_page
parameter (?per_page=10) specifies 10 instances per page.

"updated": "2015-11-19T21:18:30.613Z",,

Date and time the response was generated.

22 JSON response components

"links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],

A self-link and a set of hyperlinks to the first, previous, and next pages in the list, relative to the page in this response. In
JSON, this is called an array. Only the relevant hyperlinks appear, so if you are on page 1, the hyperlink to the previous page
does not appear.

"entries": [
 {
 "@base": "https://10.245.23.125/api/instances/alert",
 "updated": "2015-11-19T21:18:30.613Z",
 "links": [
 {
 "rel": "self",
 "href": "/alert_1"
 }
],
 "content": {
 "id": "alert_1",
 "severity": 4,
 "description": "The DNS client configured for the NAS server has faulted.
Contact your service provider."
 }
 }, {
 "@base": "https://10.245.23.125/api/instances/alert",
 "updated": "2015-11-19T21:18:30.613Z",
 "links": [
 {
 "rel": "self",
 "href": "/alert_2"
 }
],
 "content": {
 "id": "alert_2",
 "severity": 6,
 "description": "The component is operating normally. No action is required."
 }
 },

List of all instances in the specified collection that meet the request criteria. The response includes the following information
for each instance:

● Instance base URI. This URI uses a different pattern than the collection URI.
● Date and time the response was generated.
● Self-link to this resource.
● Attribute values as a set of name:value pairs.

Using the ?compact=true query parameter suppresses the instance base URI and links.

Related references

Instance resource

Empty response body

Job resource instance

Message entity

Related tasks

Retrieving data for multiple occurrences in a collection

JSON response components 23

Instance resource
An instance resource occurs in response to a GET instance request that results in a 200 OK HTTP status code. By default, this
response body contains all available information about the requested resource instance. (The same information appears in the
"entries" array of the collection resource.) You can limit the amount of data returned by using the ?fields, and ?compact
query parameters.

The following example illustrates the components of an instance resource. It shows an instance resource returned in response
to a GET instance request for the alert resource type with an id of alert_1. Spaces outside the quoted strings are used for
readability, and are not significant.

Request

GET https://10.245.23.125/api/instances/alert/alert_1?fields=severity,description

Response

{
 "@base": "https://10.245.23.125/api/instances/alert",

Instance base URI. All links within this scope use this base URI.

 "updated": "2015-11-19T21:36:40.360Z",

Date and time the response was generated.

"links": [
 {
 "rel": "self",
 "href": "/ alert_1"
 }
],

Self-link to this resource. Using the ?compact=true query parameter suppresses this link.

 "content": {
 "id": "alert_1",
 "severity": 4,
 "description": "The DNS client configured for the NAS server has faulted. Contact
your service provider."
 }
}

Returned content, in which the attribute values are a set of name:value pairs.

Related references

Collection resource

Empty response body

Job resource instance

Message entity

Minimal instance resource
A minimal instance resource occurs in response to a POST operation for create that results in a 201 Created HTTP return
code. This response body contains the id attribute and a self-link for the new resource instance.

The following examples illustrate the components of a minimal instance resource. It shows a minimal instance resource returned
in response to a successful POST request for creating a new user configuration. The request body contains the arguments used
to populate the new configuration.

24 JSON response components

Example

Request

POST https://10.6.9.55/api/types/user/instances

Request body

 {
 "name": "Operator4",
 "role": "operator",
 "password":"Password456!"
}

Response

{
 "@base": "https://10.6.9.55/api/instances/user",

Base URI for this response. All links within this scope use this base URI.

"updated": "2013-03-13T17:13:27.616Z",

Date and time the response was generated.

 "links": [
 {
 "rel": "self",
 "href": "/user_Operator4"
 }
],

Self-link to this resource.

 "content": {
 "id": "user_Operator4"
 }
}

Unique identifier of the new user instance.

Empty response body
An empty response body occurs in response to a DELETE request that results in a 204 No Content status code (which
indicates success). In this circumstance, response headers are returned with the empty response body. An empty response body
also occurs in response to an action POST request that does not have output data and that results in a 204 No Content
status code (indicating success).

Related references

Collection resource

Instance resource

Job resource instance

Message entity

Job resource instance
A job resource instance occurs in response to an asynchronous request that results in a 202 Accepted HTTP return code.
This response body contains the id attribute and self-link for the job resource instance. You can query the job resource

JSON response components 25

instance to find out whether the job completed and to get the response to the asynchronous request. For a description of the
job resource type, see the job topic in the Unisphere Management REST API Reference Guide.

The following example returns a job resource instance in response to a successful asynchronous request.

Request: POST https://10.108.127.27/api/instances/user/user_Fredsmith/action/
modify?timeout=1

Response: {
 "tasks": [
 {
 "name": "Common UIS job",
 "state": 0
 }
],
 "stateChangeTime": "2014-02-11T08:29:10.916Z",
 "submitTime": "2014-02-11T08:29:10.351Z",
 "estRemainTime": "00:01:40.000",
 "progressPct": 0,
 "methodName": "user.modify",
 "id": "N-67",
 "name": "Common UIS job",
 "state": 2
}

Related references

Collection resource

Instance resource

Empty response body

Message entity

Message entity
A message entity is an instance of the message global embedded type. It occurs in response to an unsuccessful request; that is,
a request that returns a 4nn or 5nn HTTP status code. Unlike the response bodies returned by successful requests, a message
entity cannot be queried independently.

The server localizes message entity text according to the locale specified in the Accept-languages request header or the
language request parameter.

The following example shows a message entity returned from a request in which the alert resource type is misspelled. For a
description of the message entity attributes, see the Unisphere Management REST API Reference Guide.

Request: GET https://10.6.7.21/api/instances/alrt

Response {
 "error": {
 "errorCode": 131149829,
 "httpStatusCode": 404,
 "messages": [
 {
 "en-US": "The requested resource does not exist. (Error
Code:0x7d13005)"
 }
],
 "created": "2014-01-14T08:12:34.803Z"
 }
}

26 JSON response components

Related references

Collection resource

Instance resource

Empty response body

Job resource instance

JSON response components 27

JSON encodings

Topics:

• JSON base value encodings
• JSON list encoding

JSON base value encodings
The following table shows the JSON encodings for each base type:

Type Format after "<name>": Example Notes

boolean true|t|1
yes|y
false|f
no|n|0

"force":true Case insensitive.

All of the listed formats are
accepted as input, but the
returned output is always
true|false.

dateTime yyyy-mm-
ddThh:mm:ss[.sss]Z

"updated":
"2015-07-14T18:21:32
.621Z"

Times are expressed in ISO
8601 UTC time (GMT time).
The [.sss] optional part
contains optional, fractional
seconds (in milliseconds).

datetime[interval] h+:mm:ss[.sss] 300:02:15 Time interval expressed in
hours, minutes, seconds,
and optionally milliseconds.
When used as an input
value, the resolution of
datetime is documented in
the Unisphere Management
REST API Reference Guide,
and its value is rounded down
to the specified unit.

embedded { "<propName>":<value1
>, … }

" health":
{ "value":0,
"description": "OK",
"resolution":"" }

In this example, health
is an embedded type
with three attributes:
value, description, and
resolution.

enum <int value> "severity":3 Enumerations, which are
integer values with name/
value mapping defined in the
data model. For the definitions
of each enumeration, see the
Unisphere Management REST
API Reference Guide.

id double quoted string "id":"123" <id> value of the referenced
resource instance. This is the
same as the FriendlyId
value that the CLI exposes.

int <int value> "answer": 42 N/A

5

28 JSON encodings

Type Format after "<name>": Example Notes

IPAddress String containing an IPv4
address, IPv6 address, or host
name.

"mgmtAddr":"128.222.
1.2"

In this API, some attributes
support IPv4 only, while
others support both IPv4
and IPv6. Some attributes
also support port numbers,
and/or DNS names. When
used in method parameters,
some IPAddress type values
support /bits to specify the
v4 netmask or v6 prefix
length.

The Help topics for individual
resource types in the
Unisphere Management REST
API Reference Guide indicate
which IP address options are
supported by that resource
type.

pair {value1:value2} {"en-US":"message
text"}

A list of pairs forms a JSON
map.

ref {"id":"value"} "pool":{"id":"123"} The ref type value is the
embedding of the target
instance.
● For requests, the ref type

value is populated with
the <id> value of the
referenced resource.

● For join output in GET
responses, the ref type
value is populated with
more of the embedded
reference property values.

In the example, ref refers to
a pool resource with an id
value of 123.

string double quoted string "description":"some
text"

Use \ to escape the quote (")
and control characters.

Related references

JSON list encoding

JSON list encoding
A JSON list is a list of values with the following format:

[<value1>,
<value2>, <value3>,...]

where:

● Square brackets enclose the list.
● Commas separate each value.
● <value> can be another list or any of the base value encoding formats.

JSON lists can be empty.

JSON encodings 29

Examples

The following example shows an empty list:

"ScheduleDays" : []

The following example shows a list with one value:

"scheduleDays" : [2]

The following example shows a list with three values:

"scheduleDays" : [2, 3, 4]

Related references

JSON base value encodings

30 JSON encodings

Preparing to make a request

Topics:

• Connecting and authenticating
• Retrieving basic system information

Connecting and authenticating
Every request to the Unisphere Management REST API must be authenticated, except for queries to the basicSystemInfo
resource type. The Unisphere Management REST API uses the standard HTTP Basic access authentication mechanism to
authenticate REST requests. The same users, whether defined in LDAP or defined locally, are valid for REST, CLI, or GUI access.

Logging into the Unisphere Management REST API server

To log into the REST API server, include this header in a GET request:

X-EMC-REST-CLIENT: true
This tells the server to use the HTTP Basic access authentication mechanism to authenticate the login request.

The server returns the following in response to a successful login:

● A 200 OK HTTP status code.

● Login session cookies, which are required for all subsequent requests.
● EMC-CSRF-TOKEN token header, which is required for POST and DELETE requests. This token header is good for the

entirety of the session.
● Ticket Granting Cookie (TGC), which is required when you are interacting with the authentication service.

To use Basic access authentication, you must include X-EMC-REST-CLIENT: true in each request to authenticate the login
session.

The following table summarizes the items to include in requests subsequent to the first GET request in a session:

Request type Items to include

GET ● X-EMC-REST-CLIENT
● All cookies returned in the first GET request of the session.

POST or DELETE ● X-EMC-REST-CLIENT
● EMC-CSRF-TOKEN token header

● All cookies returned in the first GET request of the session.

The following headers should also be included in requests:

● Accept: application/json (to indicate that the format of the response content is JSON)

● Content-type: application/json (to indicate that the format of the request contains body is JSON; required if
there is a request body)

Obtaining login session information

Query the loginSessionInfo resource type to find out basic information about the current session. The following table
describes the information returned in response to a successful query of the loginSessionInfo resource type:

6

Preparing to make a request 31

Attribute Description

id Unique identifier of the loginSessionInfo resource instance.

user Information about the user logged into this session, as defined by the
user resource type.

roles List of roles for the user logged into this session, as defined by the
role resource type.

idleTimeout Number of seconds after last use until this session expires.

isPasswordChangeRequired Indicates whether the password must be changed in order to use this
session created for the built-in admin account. Values are:

● true - Password must be changed.

● false - Password does not need to be changed.

For information about changing the password for a local user, see the
Help topic for the user resource type in the Unisphere Management
REST API Reference Guide.

For example:

 "content": {
 "id": "admin",
 "roles": [
 {
 "id": "administrator"
 }
],
 "user": {
 "id": "user_admin"
 },
 "idleTimeout": 3600,
 "isPasswordChangeRequired": false
 }

Logging out of the Unisphere Management REST API server

Use the following request components to log out of the storage system to which the login request was made:

Header: Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
<TGC>
<All other cookies returned in the first GET request of the session>

Operation: POST
URI pattern: /api/types/loginSessionInfo/action/logout

Body {
“localCleanupOnly” : "true"
}

The server returns a 204 No Content HTTP status code and an empty response body in response to a successful local
logout.

If you set the localCleanupOnly argument to "false" or you do not specify it, the client will log out of all storage systems
in the overall SSO session.

32 Preparing to make a request

Related references

HTTP request headers

HTTP status codes

Message entity

Related tasks

Retrieving basic system information

Retrieving basic system information
Use the following request components to access basic system information before logging into the REST API:

Header: Accept: application/json
Operation: GET
URI pattern: /api/types/basicSystemInfo/instances
Body Empty

If the request succeeds, it returns a 200 OK HTTP status code and basic system information in the response body. If it does
not succeed, it returns a 4nn or 5nn HTTP status code and a message entity.

The following table describes the information returned in response to a successful request to the basicSystemInfo resource
type:

Argument Description

id Unique identifier of the basicSystemInfo resource
instance.

model Model name of this storage system. This value comes from
the model attribute of the system resource.

name Name of this storage system. This value comes from the
name attribute of the system resource.

softwareVersion Software version of this storage system. This
value comes from the version attribute of the
installedSoftwareVersion resource.

apiVersion Latest version of the REST API that this storage system
supports.

earliestAPIVersion Earliest version of the REST API that this storage system
supports.

Related references

HTTP status codes

Message entity

Related tasks

Connecting and authenticating

Preparing to make a request 33

Querying a resource

Topics:

• Retrieving data for multiple occurrences in a collection
• Retrieving data for a specified resource instance
• Omitting metadata from responses
• Specifying the attributes to return in a query response
• Paginating response data
• Filtering response data
• Sorting response data
• Aggregating response data
• Defining new attributes from existing attributes
• Extending queries to include related data
• Localizing response text

Retrieving data for multiple occurrences in a
collection
To retrieve data for multiple occurrences of a resource type, use the following request components:

Header Accept: application/json

Operation GET

URI pattern /api/types/<resourceType>/instances

where <resourceType> is the resource type for the collection you want to return.

For additional functionality, such as paging, filtering, and localizing return messages, you can append one
or more request parameters to the URI.

Body Empty.

If the request succeeds, the server returns a 200 OK HTTP status code and a collection resource in the response body. If the
request does not succeed, the server returns a 4nn or 5nn HTTP status code and a message entity in the response body.

By default, the response to a GET collection request includes only the unique identifier (id attribute) of the specified resource
type. You can use the following request parameters to customize the returned data:

Request parameters Description

per_page and page Groups returned resource type instances into chunks that form pages, and returns only the
specified page.

filter Returns the resource type instances that match the specified criteria.

fields Requests data for a specified set of attributes.

compact Omits metadata from the resource type instances in the response.

The collection resource returned by a collection query contains a base URI and self-link for each instance in the list. You can
create an instance query for a particular instance by appending the base URI to the instance's self-link.

7

34 Querying a resource

Example

The following request returns the unique identifiers of all resources in the alert resource collection. The fields parameter
specifies that the value for the severity and description attributes should also be returned. This example shows two
returned instances:

Header Accept: application/json

Request GET https://10.108.53.216/api/types/alert/instances?
fields=severity,description

Request body Empty.

Response body "entries": [
 {
 "@base": "https://10.245.23.125/api/instances/alert",
 "updated": "2015-11-19T21:18:30.613Z",
 "links": [
 {
 "rel": "self",
 "href": "/alert_1"
 }
],
 "content": {
 "id": "alert_1",
 "severity": 4,
 "description": "The DNS client configured for the NAS server has
faulted. Contact your service provider."
 }
 },
 {
 "@base": "https://10.245.23.125/api/instances/alert",
 "updated": "2015-11-19T21:18:30.613Z",
 "links": [
 {
 "rel": "self",
 "href": "/alert_2"
 }
],
 "content": {
 "id": "alert_2",
 "severity": 6,
 "description": "The component is operating normally. No action
is required."
 }
 },

Related references

Collection resource

Request parameters

HTTP status codes

Message entity

Related tasks

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Querying a resource 35

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

Retrieving data for a specified resource instance
To retrieve data for a specified resource instance, use the following request components:

Header Accept: application/json
Operation GET
URI patterns For all resource types:

 /api/instances/<resourceType>/<id>

For applicable resource types:

 /api/instances/<resourceType>/name:<assignedName>

where:
● <resourceType> is the resource type of the desired instance.
● <id> is the unique identifier of the desired instance.
● <assignedName> is the user-assigned name of the desired instance.

For additional functionality, such as returning specific attributes, paging, filtering, and localizing return
messages, you can append one or more request parameters to the URI. To see if a resource type
can be identified by the user-assigned name, see the individual resource type topics in the Unisphere
Management REST API Reference Guide.

Body Empty.

If the request succeeds, the server returns a 200 OK HTTP status code and an instance resource in the response body. If the
request does not succeed, the server returns a 4nn or 5nn HTTP status code and a message entity in the response body.

By default, the response to a GET collection request includes only the unique identifier (id attribute) of the specified resource
type. You can use the following request parameters to customize what data is returned:

Request parameter Description

fields Requests data for a specified set of attributes.

compact Omits metadata from the instance in the response.

Example 1 - Using the ID to identify the instance

The following request returns the values for the id, name, and rpm attributes for the disk resource instance that has an id of
dpe_drive_4. The id attribute is returned automatically, while the fields parameter specifies that the value for the name
and rpm attributes should also be returned.

Header: Accept: application/json

Request GET https://10.108.53.216/api/instances/disk/dpe_drive_4?fields=name,rpm

Response body {
 "@base": "https://10.108.53.216/api/instances/disk",
 "updated": "2015-10-27T21:30:58.013Z",
 "links": [
 {
 "rel": "self",
 "href": "/dpe_drive_4"

36 Querying a resource

 }
],
 "content": {
 "id": "dpe_drive_4",
 "name": "Drive 4",
 "rpm": 15000
 }
}

Example 2 - Using the user-assigned name to identify the instance

The following request returns the values for the id, name, and rpm attributes for the disk resource instance that has a
user-assigned name of Drive 4. The id attribute is returned automatically, while the fields parameter specifies that the
value for the name and rpm attributes should also be returned.

Header: Accept: application/json

Request GET https://10.108.53.216/api/instances/disk/name:Drive 4?fields=name,rpm

Response body {
 "@base": "https://10.108.53.216/api/instances/disk",
 "updated": "2015-10-27T21:30:58.013Z",
 "links": [
 {
 "rel": "self",
 "href": "/dpe_drive_4"
 }
],
 "content": {
 "id": "dpe_drive_4",
 "name": "Drive 4",
 "rpm": 15000
 }
}

Related references

Request parameters

HTTP status codes

Instance resource

Message entity

Related tasks

Retrieving data for multiple occurrences in a collection

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

Querying a resource 37

Omitting metadata from responses
Use the compact request parameter in a collection or instance query to omit metadata from each instance in the response.
When you set compact=true, only the "content" component is returned at the instance level. The compact request
parameter does not affect metadata at the collection level, so the collection-level "@base," "links," and "updated,"
components are still returned when compact=true.

Using the compact request parameter can save bandwidth and processing on both ends of the client/server connection.
For this reason, it is recommended that you always use the compact request parameter on queries, unless you need the
collection-level hyperlinks.

Syntax

As the first parameter on the request URI: ?compact=<bool_value>
As a subsequent parameter on the request URI: &compact=<bool_value>
where valid values for <bool_value> are:

● true - Eliminates the "@base," "links", and "updated" components from the instance level in the response.

● false - (Default) Returns all metadata, including instance-level metadata.

Examples

The following request omits metadata from the returned alert resource type instances:

Header Accept: application/json

Request GET https://10.108.53.216/api/types/alert/instances?
fields=severity,component,message,resolution&compact=true

Response {
 "@base": "https://10.108.53.216/api/
types/alert/instances?filter=severity eq
3&fields=severity,component,message,resolution,id&per_page=2000&compact=true",
 "updated": "2015-10-28T13:01:50.054Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "alert_4",
 "severity": 3,
 "component": {
 "id": "nas_4",
 "resource": "nasServer"
 },
 "message": "All DNS servers configured for DNS client of NAS server
DHWindows2 are not reachable.",
 "resolution": "0"
 }
 },
 {
 "content": {
 "id": "alert_7",
 "severity": 3,
 "component": {
 "id": "nas_6",

38 Querying a resource

 "resource": "nasServer"
 },
 "message": "All LDAP servers configured for LDAP client of NAS server
DHWindows3 are not reachable.",
 "resolution": "0"
 }
 }
]
}

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

Specifying the attributes to return in a query
response
Use the fields request parameter in a collection query to specify the set of attributes to return in a response. If you do not
use this parameter, a query will return the id attribute only.

When you use the fields request parameter, you can refer to attributes in a related resource type, as described in the Syntax
section below. You can also define a custom attribute.

Syntax

As the first parameter on the request URI: ?fields=<attr1>,<attr2>,<attr3>...
As a subsequent parameter on the request URI: &fields=<attr1>,<attr2>,<attr3>...
where the attributes whose values you want to retrieve are listed in a comma-separated list.

You can use dot notation syntax (resource_type.attribute) in a fields expression to return the values of attributes
from related resource types. A related resource type is a resource type that is either referred to explicitly in the definition of the
target resource type or embedded in the target resource type.

Considerations

The following considerations apply to using the fields parameter:

● If a fields request is made for an attribute that is not defined on the resource type, the server returns a 422
Unprocessable Entity error.

● No attributes, except for id, are guaranteed to be available on any returned instance. If you specify an attribute in the fields
list and the attribute value is defined, but not available, the server does not return the attribute name in the response.

● If an attribute has a valid, empty string value, the server returns the value as <attribute>:"".

Querying a resource 39

● Although a response normally contains only the requested attributes, this is not guaranteed. You should therefore be
prepared to ignore unrequested properties.

Example

The following request retrieves values for the slotNumber attribute in the disk resource collection:

Header Accept: application/json

Request GET https://10.108.53.216/api/types/disk/instances?
fields=name,slotNumber&compact=true

Response {
 "@base": "https://10.108.53.216/api/types/disk/instances?
fields=name,slotNumber,id&per_page=2000&compact=true",
 "updated": "2015-10-28T13:09:19.005Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "dpe_disk_0",
 "slotNumber": 0,
 "name": "DPE Disk 0"
 }
 },
 {
 "content": {
 "id": "dpe_disk_1",
 "slotNumber": 1,
 "name": "DPE Disk 1"
 }
 },
.
.
.

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

40 Querying a resource

Paginating response data
Pagination in a REST API provides a way to create a paging view of a large list of resource instances returned by a collection
query. Paging enables you to:

● Group resource instances in a response.
● Limit the number of resource type instances that get returned, which can save bandwidth.

The Unisphere Management REST API uses the following parameters to support pagination:

Request parameter Description Syntax

per_page Specifies how many resource instances
to return in one page.

As the first parameter
on the request URI: ?
per_page=<instances_per_page>
As a subsequent parameter on the
request URI:
&per_page=<instances_per_page
>
where <instances__per_page> is
the number of resource instances
returned in one page. You can specify
any integer for the per_page value.
If the per_page parameter is not
specified, the server returns 2000
resource instances that meet the
request criteria on the page specified by
the page parameter.

NOTE: For event resource

instances, the per_page default

is 100 rather than 2000. Also, the
maximum value for per_page is

250. If you specify a higher value,
the system returns 250 resource
instances per page.

page Identifies the page to return in a
response. If this parameter is not
specified, the server returns all resource
instances that meet the request criteria
in page 1.

As the first parameter on the request
URI: ?page=<page_number>.

As a subsequent parameter on the
request URI:

&page=<page_number>
where <page_number> is the specific
page you want the server to return. If
the page parameter is not specified,
the server returns all resource type
instances that meet the request criteria
on page 1.

with_entrycount When true, returns a link to the last
page in the response and also returns
the entryCount:<count> response
component, where <count> indicates the
number of resource instances in the
complete list, irrespective of any type of
filtering.

The default for with_entrycount is
false.

As the first parameter on the request
URI: ?with_entrycount=true.

As a subsequent parameter
on the request URI:
&with_entrycount=true

Querying a resource 41

Considerations

The REST API server limits the number of returned resource type instances in a page to 2000 and uses page number 1 as the
default page. The per_page and page parameters can override these defaults.

When a query request includes both the per_page and page parameters, the server does the following:

1. Constrains the data based on the filter query parameter, if it is specified in the request.

2. Returns a chunk of data on a single page, as specified by the per_page and page parameters.

The server removes extra data before returning data to the client. Because of this, using the per_page and page parameters
can save bandwidth.

To help you access other pages of response data, the REST API returns links to the previous and next page. If you set the
with_entrycount parameter to true, the REST API also returns a link to the last page in the response and the number of
resource instances in the complete list, irrespective of any filtering. This information can help you create meaningful scroll bars
for responses in a GUI application.

NOTE: Even when two requests are the same, the contents of the returned list can change between the requests. The

requests are independent, and adjacent pages can have missing or overlapped data due to changes in the data between the

queries. You can use the orderby request parameter to ensure that results are consistent between requests with different

paging.

Example 1 - Using pagination with the with_entrycount parameter
omitted

The following request directs the server to group return disk instance response data in chunks of two instances per page and
to return only the instances on page 3. The fields parameter in this example specifies that the values for the name and id
attributes be returned. The response does not contain a link to the last page, because the with_entrycount parameter is
false by default, and it is not specified in this example.

Header Accept: application/json

Request https://10.103.73.108/api/types/disk/instances?per_page=2&page=3

Response {
 "@base": "https://10.103.73.108/api/types/disk/instances?
fields=name,id&per_page=2",
 "updated": "2016-01-19T06:51:53.510Z",
 "links":
 [
 {
 "rel": "self",
 "href": "&page=3"
 },
 {
 "rel": "first",
 "href": "&page=1"
 },
 {
 "rel": "prev",
 "href": "&page=2"
 },
 {
 "rel": "next",
 "href": "&page=4"
 }
],
 "entries":
 [
 {
 "@base": "https://10.103.73.108/api/instances/disk",

42 Querying a resource

 "updated": "2016-01-19T06:51:53.510Z",
 "links":
 [
 {
 "rel": "self",
 "href": "/dpe_disk_4"
 }
],
 "content":
 {
 "id": "dpe_disk_4",
 "name": "DPE Disk 4"
 }
 },
 {
 "@base": "https://10.103.73.108/api/instances/disk",
 "updated": "2016-01-19T06:51:53.510Z",
 "links":
 [
 {
 "rel": "self",
 "href": "/dpe_disk_5"
 }
],
 "content":
 {
 "id": "dpe_disk_5",
 "name": "DPE Disk 5"
 }
 }
]
}

Example 2 - Using pagination with the with_entrycount parameter set
to true

The following request directs the server to group return disk instance response data in chunks of two instances per page
and to return only the instances on page 3. The fields parameter in this example specifies that the values for the name and
id attributes be returned. The response contains a link to the last page and also contains a count of all instances in the list,
because the with_entrycount parameter is set to true.

Header Accept: application/json

Request https://10.103.73.108/api/types/disk/instances?
fields=name&per_page=2&page=3&with_entrycount=true

Response {
 "@base": "https://10.103.73.108/api/types/disk/instances?
fields=name,id&per_page=2",
 "updated": "2016-01-19T06:51:53.510Z",
 "links":
 [
 {
 "rel": "self",
 "href": "&page=3"
 },
 {
 "rel": "first",
 "href": "&page=1"
 },
 {
 "rel": "prev",
 "href": "&page=2"

Querying a resource 43

 },
 {
 "rel": "next",
 "href": "&page=4"
 }
 {
 "rel": "last",
 "href": "&page=13"
 }
],
 "entryCount": 25,
 "entries":
 [
 {
 "@base": "https://10.103.73.108/api/instances/disk",
 "updated": "2016-01-19T06:51:53.510Z",
 "links":
 [
 {
 "rel": "self",
 "href": "/dpe_disk_4"
 }
],
 "content":
 {
 "id": "dpe_disk_4",
 "name": "DPE Disk 4"
 }
 },
 {
 "@base": "https://10.103.73.108/api/instances/disk",
 "updated": "2016-01-19T06:51:53.510Z",
 "links":
 [
 {
 "rel": "self",
 "href": "/dpe_disk_5"
 }
],
 "content":
 {
 "id": "dpe_disk_5",
 "name": "DPE Disk 5"
 }
 }
]
}

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Filtering response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

44 Querying a resource

Filtering response data
Use the filter request parameter to specify matching criteria for a list of resources returned by a collection query. The
filter parameter works like an SQL WHERE clause. You specify a filter expression composed of boolean predicates, and
the expression is applied against the attribute values of the requested resource type. Only those instances that cause the
filter expression to evaluate to true are returned in the query response.

Using the filter parameter can save bandwidth, because the server removes extra data before returning data to the client.
However the filter parameter does not reduce the amount of work the server performs to answer the request.

NOTE: Very complex requests can be slow or can fail.

Syntax

As the first parameter on the request URI: ?filter=<filter_expr>
As a subsequent parameter on the request URI: &filter=<filter_expr>
where <filter_expr> is defined by the following syntax using Backus-Naur Form (BNF):

filter_expr ::= and_bool_expr
 | bool_expr ‘or’ and_bool_expr

and_bool_expr ::= simple_bool_expr
 | and_bool_expr ‘and’ simple_bool_expr

simple_bool_expr ::= cmp_expr
 | unary_expr
 | ‘not’ unary_expr

cmp_expr ::= unary_expr comparator unary_expr
 | lk_expr
 | in_expr

comparator ::= 'eq' | 'ne' | 'gt' | 'ge' | 'lt' | 'le'

lk_expr ::= attribute_name ‘lk’ constant_string

in_expr ::= attribute_name in_items_expr ‘)’

in_items_expr ::= ‘in’ ‘(‘ constant_string
 | in_items_expr ‘,’ constant_string

unary_expr ::= constant_value
 | attribute_name
 | ‘(‘ new_attr_expr ‘)’
 | concat_expr
 | count_expr
 | str_expr
 | enum_expr
 | sum_expr
 | concatList_expr

new_attr_expr ::= unary_expr
 | bool_expr
 | cond_expr
 | arith_expr

arith_expr ::= high_priority_arith_expr
 | arith_expr [‘+’|’-‘] high_priority_arith_expr

high_priority_arith_expr ::= unary_expr
 | high_priority_arith_expr [‘*’|’/‘] unary_expr

concat_expr ::= concat_prefix_expr ‘)’

concat_prefix_expr ::= ‘@concat’ ‘(‘ concat_items_expr ‘,’ concat_items_expr
 | concat_prefix_expr ‘,’ concat_items_expr

Querying a resource 45

concat_items_expr ::= unary_expr
 | new_attr_expr

count_expr ::= ‘@count’ ‘(‘ attribute_name ‘)’

str_expr::= ‘@str ‘(‘ attribute_name ‘)’

enum_expr::= ‘@enum ‘(‘ attribute_name ‘)’

sum_expr::= ‘@sum ‘(‘ attribute_name ‘)’

concatList_expr::= ‘@concatList ‘(‘unary_expr ',' 'separator=' const_value ‘)’
 |‘@concatList ‘(‘unary_expr unary_expr const_string ‘)’
 |‘@concatList ‘(‘unary_expr ',' 'separator=' const_value ',' 'order='
const_string ‘)’
 |‘@concatList ‘(‘unary_expr ',' 'order=' const_string ',' 'separator='
const_value ‘)’

In the syntax for <filter_expr>:

● attribute_name is the name of an attribute of the resource type. If the value of the attribute is a list, then the
comparison is done against each value in the list, and the match is successful if at least one value in the list matches the
filter expression. one of the following:

○ Null
○ The integer 0
○ An empty collection
○ An empty array

It evaluates to true in all other cases.

● constant_value can be a:

○ double quoted constant string
○ constant number: integer/float in decimal or hexadecimal format
○ boolean constant: true/false/True/False/TRUE/FALSE
○ null/Null/NULL
All string comparisons, including lk and in, are case insensitive.

NOTE: You can use dot notation syntax (resource_type.attribute) in a filter expression to filter by attributes

from a related resource type. A related resource type is a resource type that is either referred to explicitly in the definition

of the target resource type or embedded in the target resource type.

Filter expressions that apply to all base types

The following comparators in a filter expression apply to all base types:

Comparator Symbol Description

eq = Equal

ne != Not equal

gt > Greater than

ge >= Greater than or equal

lt < Less than

le <= Less than or equal

The interpretation of gt, ge, lt, and le is type dependent. For example, gt used with dateTime attributes means the date
value to the right of gt must be more recent than the date value to the left of gt.

46 Querying a resource

Filter expressions that apply only to strings

The following comparators in a filter expression apply only to strings:

Comparator Symbol Description

lk LIKE (Like the SQL LIKE condition) Tests for
a match against a value that contains
one or more wildcards.

% matches zero or more characters.
_ matches one character

Use the escape character \ if a constant
string includes the % or _ characters
(such as abc%d or abc_d), and you
do not want to treat the % or _ as a
wildcard.

When using a wildcard or escape
character in HTML, you must use the
following HTML-encoded characters:

%25 to represent %

%5F to represent _

%5C to represent /

For example:

ServerName lk "server%25"
matches instances where ServerName
equals server1, server2, server3,
server10, and so forth. In this
example, %25 is the encoded character
for %.

ServerName lk "serv%5Fer"
matches instances where ServerName
equals serv1er, ser2er, serv3er
and so forth. In this example, %5F is the
encoded character for _.

ServerName lk "serv%5C%25"
matches instances where ServerName
equals serv%. In this example, %25
makes the wildcard a literal string.

in IN (Like the SQL IN function) Tests for a
match against one of a list of values.

For example:

ServerName in ("server1",
"server2", "server3")
matches instances where ServerName
equals server1, server2, or
server3.

NOTE:

● All string comparisons, including lk and in, are case insensitive.

● Spaces are supported in string compares when enclosed in single or double quotes. For example, ?
filter=description lk "%mount point%".

Querying a resource 47

Example 1 - Filtering response data using the eq comparator

The following request returns the alert resource instances with severity equal to 3.

Header Accept: application/json

Request GET https://10.108.53.216/api/types/alert/instances?
fields=severity,component,message,resolution,resource&filter=severity eq
3&compact=true

Response {
 "@base": "https://10.108.53.216/api/
types/alert/instances?filter=severity eq
3&fields=severity,component,message,resolution,id&per_page=2000&compact=true",
 "updated": "2015-10-28T13:01:50.054Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "alert_4",
 "severity": 3,
 "component": {
 "id": "nas_4",
 "resource": "nasServer"
 },
 "message": "All DNS servers configured for DNS client of NAS server
DHWindows2 are not reachable.",
 "resolution": "0"
 }
 },
 {
 "content": {
 "id": "alert_7",
 "severity": 3,
 "component": {
 "id": "nas_6",
 "resource": "nasServer"
 },
 "message": "All LDAP servers configured for LDAP client of NAS server
DHWindows3 are not reachable.",
 "resolution": "0"
 }
 }
]
}

Example 2 - Filtering response data using the lk comparator

The following request returns user instances with names that start with the string "userA".

Header Accept: application/json

Request GET https://10.108.53.216/api/types/user/instances?fields=name,role
&filter=name lk \"userA%\"&compact=true

48 Querying a resource

Response {
 "@base": "https://10.108.53.216/api/types/user/instances?
fields=name,id,role.id&per_page=2000&compact=true",
 "updated": "2015-10-28T13:15:20.183Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "user_admin",
 "name": "admin",
 "role": {
 "id": "administrator"
 }
 }
 }
]
}

Example 2 - Filtering response data using a conditional expression

The following example returns user information for users whose role is "admin":

Header Accept: application/json

Request GET https://10.108.53.216/api/types/user/instances?
fields=name,role&filter=role.id lk "admin%25"&compact=true

Response {
 "@base": "https://10.108.53.216/api/
types/user/instances?filter=role.id lk \"admin%
\"&fields=name,id,role.id&per_page=2000&compact=true",
 "updated": "2015-10-28T13:17:50.371Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "user_admin",
 "name": "admin",
 "role": {
 "id": "administrator"
 }
 }
 }
]
}

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Querying a resource 49

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

Sorting response data
Use the orderby request parameter to specify sort criteria for one attribute in a list of resources returned by a collection
query. The orderby parameter works like an SQL Order By clause. You can specify one of these sort orders for the attribute:

● asc: (Default) Sorts the response data in ascending order.

● desc: Sorts the response data in descending order.

Append the sort order to an attribute using an HTML space. For example:%20asc or %20desc.

If the request succeeds, it returns a 200 OK HTTP status code with requested resource information in the response body. If it
does not succeed, it returns a 4nn or 5nn HTTP status code and a message entity.

Syntax

As the first parameter on the request URI: ?orderby=<orderby_expr>
As a subsequent parameter on the request URI: &orderby=<orderby_expr>
where <orderby_expr> is defined by the following syntax using Backus-Naur Form (BNF):

orderby_expr ::= sub_orderby_expr | orderby_expr ',' sub_orderby_expr sub_orderby_expr ::=
prop_expr | prop_expr 'ASC'| prop_expr 'DESC'
where:

● prop_expr is an attribute name defined for the resource being queried. Its type can be int, float, string,
InetSocketAddress, Date, Boolean, Enum, or a list whose element is among the above types.

● 'ASC'/'DESC' is case insensitive.

● If a sort order is not specified, the default value is 'ASC'.
NOTE: You can use dot notation syntax (resource_type.attribute) in an orderby expression to sort responses

by the value of an attributes from related a resource type. A related resource type is a resource type that is either

referred to explicitly in the definition of the target resource type or embedded in the target resource type.

Example 1: Sorting drive information by drive name

The following request retrieves drive names and sizes, and sorts this information by name in ascending order.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.53.216/api/types/disk/instances?fields=name,size
&orderby=name&compact=true

Response {
 "@base": "https://10.108.53.216/api/types/disk/instances?
fields=name,size&orderby=name&per_page=2000&compact=true",
 "updated": "2015-10-28T13:29:39.374Z",
 "links": [

50 Querying a resource

 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "dpe_disk_0",
 "name": "DPE Disk 0",
 "size": 30565990400
 }
 },
 {
 "content": {
 "id": "dpe_disk_1",
 "name": "DPE Disk 1",
 "size": 30565990400
 }
 },
 {
 "content": {
 "id": "dpe_disk_2",
 "name": "DPE Disk 2",
 "size": 30565990400
 }
 },

.

.

.

Example 2: Sorting by attributes from a referenced resource type

The following request retrieves drive names and parent DPE names, and sorts this information by parent DPE name in ascending
order.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.53.216/api/types/disk/instances?
fields=name,parentDpe.name&orderby=parentDpe.name&compact=true

Response {
 "@base": "https://10.108.53.216/api/types/disk/instances?
fields=id,name,parentDpe.name,parentDpe.id&orderby=parentDpe.name&per_page=2000&compact=true",
 "updated": "2015-10-28T18:53:40.256Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "disk_0",
 "name": "Disk 0",
 "parentDpe": {
 "id": "dpe_a",
 "name": "DPE_A"
 }
 }
 },
 {

Querying a resource 51

 "content": {
 "id": "disk_1",
 "name": "Disk 1",
 "parentDpe": {
 "id": "dpe_b",
 "name": "DPE_B"
 }
 }
 },
 {
 "content": {
 "id": "disk_2",
 "name": "Disk 2",
 "parentDpe": {
 "id": "dpe_c",
 "name": "DPE_C"
 }
 }
 },
 {
.
.
.

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

Aggregating response data
Use the groupby request parameter to group specified values and apply the aggregate function @sum to each group. The
groupby parameter works like an SQL Group By clause.

NOTE: You can use @sum without the groupby parameter, if you are grouping by the id attribute of a resource.

Syntax

As the first parameter on the request URI: ?groupby=<groupby_expr>
As a subsequent parameter on the request URI: &groupby=<groupby_expr>
where <groupby_expr> is defined by the following syntax using Backus-Naur Form (BNF):

groupby_expr ::= sub_groupby_expr
 | groupby_expr ‘,’ sub_groupby_expr

sub_groupby_expr ::= prop_expr

52 Querying a resource

In the syntax for <groupby_expr>, prop_expr is the name of an attribute. Its type can be int,float, string,
InetSocketAddress, Date, Boolean, Enum, or a list whose element is among the above types.

NOTE: You can use dot notation syntax (resource_type.attribute) in a groupby expression to group the response

data by attributes from a related resource type. A related resource type is a resource type that is either referred to explicitly

in the definition of the target resource type or embedded in the target resource type.

Example - Summarizing the size and rawSize of drives grouped by drive
type

The following request returns a summary of size and rawSize of drives based on the type to which they belong.

Header Accept: application/json

Content-Type: application/json

Request GET https://10.108.53.216/api/types/disk/instances?
fields=diskTechnology,abc::@sum(size),def::@sum(rawSize)&groupby=diskTechnology"&compact=true

Response {
 "@base": "https://10.103.75.136/api/types/disk/instances?
fields=type,abc::@sum(size),def::@sum(rawSize)&groupby=type",
 "updated": "2014-05-30T06:57:24.045Z",
 "links": [
 {"rel": "self",
 "href": "&page=1"
 }
]
 "entries": [
 {
 "updated": "2015-11-12T10:07:05.467Z",
 "content": {
 "diskTechnology": 1,
 "abc": 285741154304,
 "def": 381681664000
 }
 }
]
}

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Defining new attributes from existing attributes

Extending queries to include related data

Localizing response text

Querying a resource 53

Defining new attributes from existing attributes
Use the fields request parameter in a collection query to define a new attribute from an expression associated with one or
more existing attributes. You can use the new attributes in filter and order by clauses to filter and sort responses.

NOTE: The processing of complex requests can be slow or can fail.

The supported expressions are:

● Boolean expressions, which include comparison and boolean operators, as described in the Syntax section.
● Conditional expression with a format of " < expr_a > ? < expr_b > : < expr_c > ". The evaluation of

<expr_a> leads to return of the value of <expr_b> if true, or <expr_c> if false.

● Arithmetic expressions with the supported operators +,-,*,/. These can include the following types of expressions:
○ Count expression, where you can apply the count function "@count(prop_name)" to a list type attribute

"prop_name" and get the number of elements in the list returned.

○ Concatenation expression, where you can apply "@concat(...)" where "..." represents variable-length arguments
that can be one or more attribute names, constant strings, or numbers. The concatenation expression results in a string
that is a concatenation of the string values of all of the arguments. You cannot specify a reference attribute in a
concatenation expression.

Syntax

As the first parameter on the request URI:

?fields=<new_attr_name>::<new_attr_expr>,<attr1>,<attr2>,...
As a subsequent parameter on the request URI:

&fields=<new_attr_name>::<new_attr_expr>,<attr1>,<attr2>,...
where <new_attr_expr> is defined by the following syntax using Backus-Naur Form (BNF):

new_attr_expr ::= unary_expr
 | bool_expr
 | cond_expr
 | arith_expr

unary_expr ::= constant_value
 | attribute_name
 | '(' new_attr_expr ')'
 | concat_expr
 | FunctionName ‘(‘unary_expr‘)’

FunctionName : ‘@count’
 | ‘@enum’
 | ‘@enumString’
 | ‘@sum’
 | ‘@str’

bool_expr ::= and_bool_expr
 | bool_expr 'or' and_bool_expr
 | bool_expr '||' and_bool_expr

and_bool_expr ::= simple_bool_expr
 | and_bool_expr 'and' and_bool_expr
 | and_bool_expr '&&' and_bool_expr

simple_bool_expr ::= cmp_expr
 | unary_expr
 | 'not' unary_expr
 | '!' unary_expr

cmp_expr ::= unary_expr comparator unary_expr
 | lk_expr
 | in_expr

lk_expr ::= attribute_name 'lk' constant_value

54 Querying a resource

in_expr ::= attribute_name in_items_expr ')'

in_items_expr ::= 'in' '(' constant_value
 | in_items_expr ',' constant_value

cond_expr ::= bool_expr '?'' new_attr_expr : new_attr_expr

arith_expr ::= high_priority_arith_expr
 | arith_expr ['+'|'-'] high_priority_arith_expr

high_priority_arith_expr ::= unary_expr
 | high_priority_arith_expr ['*'|'/'] unary_expr

concat_expr ::= concat_prefix_expr ')'

concat_prefix_expr ::= '(' concat_items_expr ',' concat_items_expr
 | concat_prefix_expr ',' concat_items_expr

concat_items_expr ::= unary_expr
 | new_attr_expr

In the syntax for <new_attr_expression>:

● attribute_name is the name of an attribute of the resource type you are querying. You can use dot notation to specify
this.

● constant_value is one of the following:

○ Double quoted constant string
○ Constant number, both integer and float, in decimal or hexadecimal format
○ Boolean constant: true/false/True/False/TRUE/FALSE
○ null/Null/NULL
○ Comparators are the same as those used in the filter expression and share the same semantics and limitations.

NOTE:

● Define the new attribute explicitly in the fields request parameter.

● Calculate the new attribute definition from existing attributes or constants. A cascaded definition, in which a new

attribute is calculated from other new attributes, is not supported.

● You cannot define a new attribute from an expression that contains a new attribute, or a new attribute whose name

conflicts with an existing attribute.

Example 1 - Defining a new attribute using an arithmetic expression

The following example defines a new attribute called percent by calculating the percent of used pool space compared to the
total pool space.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.53.165/api/types/pool/instances
?fields=sizeUsed,sizeTotal,percent::sizeUsed*100/sizeTotal
&compact=true&with_entrycount=true

Response body
for a successful
response

{
 "@base": "https://10.108.53.165/api/types/pool/instances
 ?fields=sizeUsed,sizeTotal,percent::sizeUsed*100/sizeTotal,
 id&per_page=2000&compact=true",
 "updated": "2016-06-02T02:54:05.489Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }

Querying a resource 55

],
 "entryCount": 1,
 "entries": [
 {
 "content": {
 "id": "pool_1",
 "sizeTotal": 118916907008,
 "sizeUsed": 15837691904,
 "percent": 13.318284
 }
 }
]
}

Example 2 - Defining a new attribute using a conditional expression

The following example defines a new attribute called lunName. This attribute will display the LUN name for a
storageResource instance if it has a type of 8 (lun). Otherwise, the lunName attribute will contain an empty string
value.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.53.165/api/types/storageResource/instances
?fields=type,lunName::type eq 8 ? name : ""
&compact=true&with_entrycount=true

Response body
for a successful
response

{
 "@base": "https://10.108.53.165/api/types/storageResource/
instances?fields=type,lunName::type eq 8 ? name :
\"\",id&per_page=2000&compact=true",
 "updated": "2016-06-02T02:58:32.695Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entryCount": 3,
 "entries": [
 {
 "content": {
 "id": "res_1",
 "type": 1,
 "lunName": ""
 }
 },
 {
 "content": {
 "id": "res_2",
 "type": 1,
 "lunName": ""
 }
 },
 {
 "content": {
 "id": "sv_1",
 "type": 8,
 "lunName": "LUN00"
 }
 }
]
}

56 Querying a resource

Example 3 - Defining a new attribute using a concatenation expression

The following example defines a new attribute called newName by concatenating the value of name with the value of type.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.53.216/api/types/storageResource/instances?
fields=name,type,newName::@concat(name, type) &compact=true

Response body
for a successful
response

{
 "@base": "https://10.108.53.216/api/types/storageResource/instances?
fields=name,type,newName::@concat(name,type),id&per_page=2000&compact=true",
 "updated": "2015-10-28T14:51:23.427Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "res_1",
 "type": 1,
 "name": "FileSystem1",
 "newName": "FileSystem11"
 }
 },
 {
 "content": {
 "id": "sv_1",
 "type": 8,
 "name": "LUNPersonal",
 "newName": "LUNPersonal8"
 }
 },
 {
 "content": {
 "id": "sv_2",
 "type": 8,
 "name": "LUNCorporate",
 "newName": "LUNCorporate8"
 }
 }
]
}

Example 4 - Defining a new attribute by concatenating elements from a
list into a single string value

The following example defines a new attribute called newProp for pool resources by concatenating the values of the
tiers.name attribute. It concatenates these values in descending order and separates them with commas.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.49.220/api/types/pool/instances
?fields=id,tiers.name,newProp::

Querying a resource 57

@concatList(tiers.name,separator=",",order="desc")
&compact=true

Response body
for a successful
response

{
 "@base": "https://10.108.49.220/api/types/pool/instances?
fields=id,tiers.name,newProp::@concatList(tiers.name,separator=\",
\",order=\"desc\")&per_page=2000&compact=true",
 "updated": "2016-06-02T03:07:13.424Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entryCount": 1,
 "entries": [
 {
 "content": {
 "id": "pool_1",
 "tiers": [
 {
 "name": "Extreme Performance"
 },
 {
 "name": "Performance"
 },
 {
 "name": "Capacity"
 }
],
 "newProp": "Performance,Extreme Performance,Capacity"
 }
 }

Example 5 - Defining a new attribute by using the text value of an
attribute defined as an enum

The following example defines a new attribute called newProp for each disk resource by using the text value of the
tierType attribute, which is an enum.

Header Accept: application/json
Content-Type: application/json

Request GET https://10.108.53.165/api/types/disk/instances?fields=id,
newProp::@enum(tierType)&filter=tierType != 0 &compact=true
&with_entrycount=true

Response body
for a successful
response

{
 "@base": "https://10.108.53.165/api/
types/disk/instances?filter=tierType != 0
&fields=id,newProp::@enum(tierType)&per_page=2000&compact=true",
 "updated": "2016-06-02T03:02:42.236Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entryCount": 7,
 "entries": [
 {
 "content": {

58 Querying a resource

 "id": "dpe_disk_0",
 "newProp": "Performance"
 }
 },
 {
 "content": {
 "id": "dpe_disk_1",
 "newProp": "Performance"
 }
 },
 {
 "content": {
 "id": "dpe_disk_2",
 "newProp": "Performance"
 }
 },
 {
 "content": {
 "id": "dpe_disk_3",
 "newProp": "Performance"
 }
 },
 {
 "content": {
 "id": "dpe_disk_4",
 "newProp": "Performance"
 }
 },
 {
 "content": {
 "id": "dpe_disk_5",
 "newProp": "Performance"
 }
 },
 {
 "content": {
 "id": "dpe_disk_6",
 "newProp": "Performance"
 }
 }
]
}

Example 6 - Defining a new attribute by using the localized text value of
an attribute defined as an enum

The following example defines a new attribute for the capabilityProfile resource type called se by using the localized
text of the spaceEfficiencies attribute, which is a collection enum. In this example, the text is localized to American
English.

Header Accept: application/json
Content-Type: application/json
accept-language: en_US

Request GET https://10.103.73.73/api/types/capabilityProfile
/instances?fields=se::@enumString(spaceEfficiencies)
&compact=true&with_entrycount=true

Response body
for a successful
response

{
 "@base": "https://10.103.73.73/api/types/capabilityProfile/instances?
fields=se::@enumString(spaceEfficiencies),id&per_page=2000&compact=true",
 "updated": "2016-06-02T03:09:44.668Z",
 "links": [

Querying a resource 59

 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entryCount": 1,
 "entries": [
 {
 "content": {
 "id": "cp_1",
 "se": [
 "Thin",
 "Thick"
]
 }
 }
]
}

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Extending queries to include related data

Localizing response text

Extending queries to include related data
You can extend the scope of a collection query to retrieve data from a related resource type. Access to data from a related
resource type is supported for the following scenarios:

● A resource type referenced explicitly by the target resource. For example, the pool attribute of the fileystem resource
type has the data type pool, which is defined by the pool resource type. Therefore, you can create a collection query for
filesystem that returns data from filesystem instances and related pool instances.

● An embedded resource type. For example, the poolTier resource type is embedded into the pool resource type.
Therefore, you can create a collection query for a pool that returns data from pool instances and related poolTier
instances.

To create an extended query, use dot notation syntax within the fields, filter, or orderby request parameters to specify
the desired attributes from related resource types.

For example, to obtain information about file systems, including the health of their associated pools, create a collection query
for the filesystem resource type that has a fields, filter, or orderby request parameter. In the parameter expression,
reference the health attribute in the pool resource type as follows:

pool.health

Example 1: Extending queries using the fields request parameter

The following query uses the fields request parameter to return information about drives and their parent DPEs. It retrieves
values for the id and name attributes for all disk instances and values from the id and name attributes from the related

60 Querying a resource

dpe instances. disk instances are related to dpe instances through the disk resource type's parentDpe attribute, which
references the dpe resource type.

Header Accept: application/json

Request https://10.108.53.216/api/types/disk/instances ?
fields=name,pool,parentDpe,parentDpe.name&compact=true

Response {
 "@base": "https://10.108.53.216/api/types/disk/instances?
fields=name,parentDpe.name,id,pool.id,parentDpe.id,parentDpe.id&per_page=2000&compact=true",
 "updated": "2015-10-28T15:12:40.655Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "dpe_disk_0",
 "name": "DPE Disk 0",
 "parentDpe": {
 "id": "dpe",
 "name": "DPE_1"
 }
 }
 },
 {
 "content": {
 "id": "dpe_disk_1",
 "name": "DPE Disk 1",
 "parentDpe": {
 "id": "dpe",
 "name": "DPE_2"
 }
 }
 },

.

.

.

Example 2: Extending queries using the filter request parameter

The following query uses the filter request parameter to return information about all alerts whose component name is
nasServer. It retrieves values for the id, severity, component, and message attributes for the alert instances that
meet this criteria and values from the id and resource attributes from the related resourceRef instances.

Header Accept: application/json

Request GET https://10.108.53.216/api/types/alert/instances?
fields=severity,component,message,component.resource&filter=component.resource eq
"nasServer"

Response {
 "@base": "https://10.108.53.216/api/
types/alert/instances?filter=component.resource eq
\"nasServer\"&fields=severity,component,message,component.resource,id&per_page=2000",
 "updated": "2015-10-28T19:04:21.310Z",

Querying a resource 61

 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "@base": "https://10.108.53.216/api/instances/alert",
 "updated": "2015-10-28T19:04:21.310Z",
 "links": [
 {
 "rel": "self",
 "href": "/alert_3"
 }
],
 "content": {
 "id": "alert_3",
 "severity": 6,
 "component": {
 "id": "nas_1",
 "resource": "nasServer"
 },
 "message": "Network interface N/A is operating normally"
 }
 },
 {
 "@base": "https://10.108.53.216/api/instances/alert",
 "updated": "2015-10-28T19:04:21.310Z",
 "links": [
 {
 "rel": "self",
 "href": "/alert_4"
 }
],
 "content": {
 "id": "alert_4",
 "severity": 3,
 "component": {
 "id": "nas_4",
 "resource": "nasServer"
 },
 "message": "All DNS servers configured for DNS client of NAS server
DHWindows2 are not reachable."
 }
 },
.
.
.

Example 3: Extending queries using the orderby request parameter

The following query uses the orderby request parameter to sort returned data by the name of the parent DPE. It retrieves
values for the id and name attributes for all disk instances and values for the id attribute of the dpe instance.

Header
 Accept: application/json

Request GET https://10.108.53.216/api/types/disk/instances?fields=id,name,parentDpe.name
&orderby=parentDpe.name&compact=true

Response {
 "@base": "https://10.108.53.216/api/types/disk/instances?
fields=id,name,parentDpe.name,parentDpe.id&orderby=parentDpe.name&per_page=2000&compact=true",
 "updated": "2015-10-28T18:09:32.692Z",

62 Querying a resource

 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 }
],
 "entries": [
 {
 "content": {
 "id": "disk_1",
 "name": "Disk 1",
 "parentDpe": {
 "id": "dpe",
 "name": "DPE_1"
 }
 }
 },
 {
 "content": {
 "id": "disk_0",
 "name": "Disk 0",
 "parentDpe": {
 "id": "dpe",
 "name": "DPE_2"
 }
 }
 },
 {
 "content": {
 "id": "disk_2",
 "name": "Disk 2",
 "parentDpe": {
 "id": "dpe",
 "name": "DPE_3"
 }
 }
 },

.

.

.

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Localizing response text

Localizing response text
For requests that result in localizable resources, such as response body text, events, alerts, and error messages, the locale
specified in the request determines the localization language for the response. If the requested dialect is not available, the API

Querying a resource 63

tries to match matches on the language, alone. For example, de-AA will match with de-DE, if de-AA is not available. If the API
cannot find a match, it uses en-US (American English) instead of returning an error message.

By default, REST API responses are in locale en-US. To request the localization of response text to other locales, use one of the
following request components:

● Accept-language request header. (Some browsers and other clients set this header automatically.)

● language request parameter, as described in the Request parameters topic. This parameter overrides the Accept-
Language request header.

Considerations for localizing response text

The following considerations apply to localizing response text in the REST API:

● Support for locales other than en-US requires the installation of language packs.

● If the requested locale is not available, the API defaults to en-US instead of returning an error message.

● All time values are supplied in Coordinated Universal Time (UTC) format.
● The language request parameter is useful for testing from a plain browser or from an environment where headers are

inconvenient.

Example 1: Using the Accept-language request header to localize

The following request returns the alert resource instances and specifies that the response be localized to Japanese.

Request Header Accept: application/json
Accept-language:ja-JP

Request GET https://10.6.7.41/api/types/alert/instances?
fields=message,component,messageId,severity,resolution,timestamp,description&compact=true

Response {
 "@base": "https://10.6.7.41/api/types/
alert/instances?fields=message,component,messageId,severity,resolution,timestamp,
description&compact=true",
 "updated": "2014-01-16T03:08:53.889Z",
 "links": [
 {
 "rel": "self",
 "href": "&page=1"
 },
 {
 "rel": "next",
 "href": "&page=2"
 },
],
 "entries": [
 {
 "content": {
 "message": "ストレージ システムのライト キャッシュが無効になっています。",
 "id": 5962,
 "component": "AlertRaidppSources",
 "messageId": "29199",
 "severity": 4,

 "resolution": "ライト キャッシュにシステム メモリが配置されていることと、ライト キャッ
シュが有効になっていることを確認します。 また、SPSが AC電源に接続され、ストレージ システムと SPSの間のシリ
アル通信ケーブルが正しく接続されていることも確認してください。 障害が発生しているハードウェア コンポーネント
があれば取り替えて、障害が解決された後でライト キャッシュが自動的に有効になるまで数分間待ちます。 問題が解決
しない場合は、サービス プロバイダにお問い合わせください。",
 "timestamp": "2013-12-11T21:54:44.000Z",
 "description": "ストレージ システムのライト キャッシュが構成されていないか、ハードウェ
ア コンポーネントまたはソフトウェアに問題があるため無効になっています。"
 }

64 Querying a resource

 }
]
}
.
.
.

Example 2: Using the language request parameter to localize

The following request yields the same response as the previous example.

Request Header Accept: application/json

Request GET https://10.6.7.41/api/types/alert/instances?
fields=message,component,messageId,severity,resoultion,
timestamp&compact=true &language=ja-JP

Related references

Request parameters

Related tasks

Retrieving data for multiple occurrences in a collection

Retrieving data for a specified resource instance

Omitting metadata from responses

Specifying the attributes to return in a query response

Paginating response data

Filtering response data

Sorting response data

Aggregating response data

Defining new attributes from existing attributes

Extending queries to include related data

Querying a resource 65

Creating other types of requests

Topics:

• Creating a resource instance
• Modifying a resource instance
• Deleting a resource instance
• Performing a class-level resource-specific action
• Performing an instance-level resource-specific action
• Creating an aggregated management request
• Working with asynchronous requests

Creating a resource instance
To create a resource instance, use the following request components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operation POST

URI pattern /api/types/<resourceType>/instances/

where <resourceType> is the resource type of the instance you want to create.

Body {
 "argument1":<value>,
 "argument2":<value>,
 "argument3":<value>
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes around a
string, dateTime, or IPAddress value.

NOTE: The unique identifier of the new instance is generated automatically by the server.

If the request succeeds, it returns a 201 Created HTTP status code and a minimal instance resource in the response body.
This resource contains the id argument, a self-link for the new resource instance, and the arguments used to populate the
new instance. If the request does not succeed, the server returns a 4nn or 5nn HTTP status code and a message entity in the
response body.

Example

The following request creates a new instance of the user resource type.

8

66 Creating other types of requests

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.245.23.125/api/types/user/instances

Request body {
 "name":"user_Operator5",
 "role":"operator",
 "password":"MyPassword1!"
}

Response body .
.
.{
 "@base": "https://10.245.23.125/api/instances/user",
 "updated": "2015-11-24T21:57:35.233Z",
 "links": [
 {
 "rel": "self",
 "href": "/user_Operator5"
 }
],
 "content": {
 "id": "user_Operator5"
 }
}

Related references

Request parameters

HTTP status codes

Minimal instance resource

Message entity

Related tasks

Modifying a resource instance

Deleting a resource instance

Performing a class-level resource-specific action

Performing an instance-level resource-specific action

Creating an aggregated management request

Working with asynchronous requests

Modifying a resource instance
To modify a resource instance, use the following request components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operation POST

Creating other types of requests 67

URI patterns For all resource types that support the modify operation:

/api/instances/<resourceType>/<id>/action/modify

For applicable resource types that support the modify operation:

/api/instances/<resourceType>/name:<assignedName>/action/modify

where:
● <resourceType> is the resource type of the instance you want to modify.

● <id> is the unique identifier of the instance you want to modify.

● <assignedName> is the user-assigned name of the instance you want to modify.

For additional functionality, such as making the request an asynchronous request and localizing return
messages, you can append one or more request parameters to the URI. To see if a resource type can
be identified by the assigned name, see the individual resource type topics in the Unisphere Management
REST API Reference Guide.

Body {
 "argument1":<value>,
 "argument2":<value>,
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes around a
string, dateTime, or IPAddress value.

If the request succeeds, it returns a 204 No Content HTTP status code and an empty response body. If the request does not
succeed, the server returns a 4nn or 5nn HTTP status code in the response header and a message entity in the response body.

Example 1 - Modifying a user identified by ID

The following request changes the role value to storageadmin for the user resource instance that has an id of
user_June:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.108.127.27/api/instances/user/user_June/action/modify

Request body {
 "role":"storageadmin"
}

Response body Empty.

Example 2 - Modifying a user identified by user-assigned name

The following request changes the role value to storageadmin for the user resource instance that has a user-assigned
name of June:

Headers Accept: application/json
Content-Type: application/json

68 Creating other types of requests

X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.108.127.27/api/instances/user/name:June/action/modify

Request body {
 "role":"storageadmin"
}

Response body Empty.

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Creating a resource instance

Deleting a resource instance

Performing a class-level resource-specific action

Performing an instance-level resource-specific action

Creating an aggregated management request

Working with asynchronous requests

Deleting a resource instance
To delete a resource instance, use the following request components:

Headers Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

If a resource type has request arguments for the DELETE operation, you must also use the following
header:

Content-Type:
application/json

Operation DELETE

URI pattern For all resource types that support the delete operation:

/api/instances/<resourceType>/<id>

For applicable resource types that support the delete operation:

/api/instances/<resourceType>/name:<assignedName>

where:
● <resourceType> is the resource type of the instance you want to delete.

● <id> is the unique identifier of the instance you want to delete.

● <assignedName>is the user-assigned name of the instance you want to delete.

For additional functionality, such as making the request an asynchronous request and localizing return
messages, you can append one or more request parameters to the URI. To see if a resource type

Creating other types of requests 69

can be identified by the user-assigned name, see the individual resource type topics in the Unisphere
Management REST API Reference Guide.

Body For most resource types, the body of a DELETE request is empty. However, if a resource type has
request arguments for the DELETE operation, they are passed as a comma-separated list of name:value
pairs.

If the request succeeds, it returns a 204 No Content HTTP status code and an empty response body. If the request does not
succeed, the server returns a 4nn or 5nn HTTP status code in the response header and a message entity in the response body.

Example 1 Deleting a user identified by ID

The following request deletes the user resource instance that has an id of user_June:

Headers Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request DELETE https://10.108.127.27/api/instances/user/user_June

Request body Empty.

Response body Empty.

Example 2 Deleting a user identified by user-assigned name

The following request deletes the user resource instance that has a user-assigned name of June:

Headers Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request DELETE https://10.108.127.27/api/instances/user/name:June

Request body Empty.

Response body Empty.

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Creating a resource instance

Modifying a resource instance

Performing a class-level resource-specific action

Performing an instance-level resource-specific action

Creating an aggregated management request

Working with asynchronous requests

70 Creating other types of requests

Performing a class-level resource-specific action
Some resource types have class-level operations, which let you perform actions related to the resource type that are not
targeted at a specific instance. For example, you can use the ipPort resource type's Recommend operation to recommend
ports on the specified SP to use for creating NAS servers.

To perform a resource-specific action on a resource type, use the following request components:

Headers For operations without request arguments:

Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

For operations with request arguments:

Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operation POST

URI pattern /api/types/<resourceType>/action/<operationName>

where <resourceType> is the resource type of the instance for which you want to perform the desired
action.

For additional functionality, such as making the request an asynchronous request and localizing response
messages, you can append one or more request parameters to the URI.

Body For operations without request arguments:

Empty.

For operations with input data:

{
 "argument1":value,
 "argument2":value,
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes around a
string, dateTime, or IPAddress value.

The success response for a class-level resource-specific action differs depending on whether the action performed has output
data:

● For actions that do not have output data, a successful request returns 204 No Content HTTP status code and an empty
response body.

● For actions that have output data, a successful request returns 200 OK HTTP status code, and the body will have the
specified out attributes in an instance resource response body.

If the request does not succeed, the server returns a 4nn or 5nn HTTP status code in the response header and a message
entity in the response body

Example

The following example uses the Recommend operation for the ipPort resource type to recommend ports on the specified SP
to use for creating NAS servers:

Creating other types of requests 71

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.108.125.206/api/types/ipPort/action/
recommendForInterface

Request body {
 "storageProcessor":{"id":"spa"}
}

Response body {
 "@base": "_https://10.108.125.206/api/types/ipPort/action/
RecommendForInterface",
 "updated": "2013-04-24T20:46:53.730Z",
 "links":
 [
 {
 "rel": "self",
 "href": "/"
 }
],
 "content":
 {
 "recommendedPorts":
 [
 {
 "spa_iom_0_eth1"
 },
 {
 "spa_iom_0_eth2"
 }
]
 }
}

Related references

Request parameters

HTTP status codes

Instance resource

Message entity

Related tasks

Creating a resource instance

Modifying a resource instance

Deleting a resource instance

Performing an instance-level resource-specific action

Creating an aggregated management request

Working with asynchronous requests

Performing an instance-level resource-specific action
Some resource types have operations that let you perform resource-specific actions on resource instances beyond the standard
delete and modify actions. For example, you can use the ldapServer resource type's Verify operation to verify connectivity
between the system and a specified LDAP server.

To perform a resource-specific action on a resource instance, use the following request components:

72 Creating other types of requests

Headers For operations without request arguments:

Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

For operations with request arguments:

Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operation POST

URI pattern For all resource types that support instance-level resource-specific actions:

/api/instances/<resourceType>/<id>/action/<actionName>

For applicable resource types that support instance-level resource-specific actions:

 /api/instances/<resourceType>/name:<assignedName>/action/<actionName>

where:
● <resourceType> is the resource type of the instance for which you want to perform an action.

● <id> is the unique identifier of the instance for which you want to perform an action.

● <actionName> is the action you want to perform.

● <assignedName> is the user-assigned name of the instance for which you want to perform an
action.

For additional functionality, such as making the request an asynchronous request and localizing response
messages, you can append one or more request parameters to the URI. To see if a resource type
can be identified by the user-assigned name, see the individual resource type topics in the Unisphere
Management API Reference Guide.

Body For operations without request arguments:

Empty.

For operations with input data:

{
 "argument1":<value>,
 "argument2":<value>,
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes around a
string, dateTime, or IPAddress value.

The success response for a class-level resource-specific action differs depending on whether the action performed has output
data:

● For actions that do not have output data, a successful request returns a 204 No Content HTTP status code and an
empty response body.

● For actions that have output data, a successful request returns a 200 OK HTTP status code, and the body will have the
specified out attributes in an instance resource response body.

If the request does not succeed, the server returns a 4nn or 5nn HTTP status code in the response header and a message
entity in the response body.

Creating other types of requests 73

Example 1: Starting the relocation operation for a pool identified by ID

The following example uses the startRelocation operation to initiate data relocation on the pool that has an id of pool_4:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.207.120.104/api/instances/pool/pool_4/action/
startRelocation

Request body {
 "endTime":"0:05:30"
}

Response body Empty

Example 2: Starting the relocation operation for a pool identified by user-
assigned name

The following example uses the startRelocation operation to initiate data relocation on the pool that has a user-assigned
name of Pool 4:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.207.120.104/api/instances/pool/name:Pool 4/action/
startRelocation

Request body {
 "endTime":"0:05:30"
}

Response body Empty

Related references

Request parameters

HTTP status codes

Instance resource

Message entity

Related tasks

Creating a resource instance

Modifying a resource instance

Deleting a resource instance

Performing a class-level resource-specific action

Creating an aggregated management request

Working with asynchronous requests

74 Creating other types of requests

Creating an aggregated management request
You can group active management (non-GET) requests together into one aggregated request. This enables you to track the
requests as a group and to pipe the output of requests as input to other requests.

To create an aggregated request, create a job instance for the request. Within the job instance, create one embedded
jobTask instance for each POST request in the aggregate:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operation POST

URI pattern /api/types/job/instances/

Body For each nested request:

{
 "name" : <request_name>",
 "object" : <request_resource_type>
 "action": <request_action>,
 "parametersIn":{<request_arguments>}
}

where:
● <request_name> is the user-specified name of the nested request. The name must be unique within

the aggregated request. It can consist of alphabetic characters, digits, and underscores.
● <request_resource_type> is the target resource type of the nested request, for example, pool

or nasServer.

● <request_action> is the target action for the nested request, for example, Create or Modify.

● <request_arguments> are the regular arguments for the specified request action, expressed as
name-value pairs or lists.

NOTE: For an instance-level action, you must specify the target instance identifier in the body.

Passing values
from one nested
request to
another

To pass the output of one nested request to the input of another nested request, use the following
notation:

@<task_request name>.<out_parameter_name>
where:
● <task_request_name> is the name of the nested request that is passing the value.

● <out_parameter_name> is the name of the input argument in the nested request to receive the
value.

If the request succeeds, it returns a 201 Created HTTP status code for synchronous requests or a 202 Accepted HTTP
status code for asynchronous requests, along with a minimal instance resource in the response body. This resource contains the
id argument, a self-link for the new resource instance, and the arguments used to populate the new instance.

If the request does not succeed, the server returns a 4nn or 5nn HTTP status code and a message entity in the response body.

Usage

All nested requests must share the same HTTP headers and URL parameters.

Creating other types of requests 75

Example

The following example shows an aggregated request that creates the following resources:

● A pool named POOL40388.

● A LUN named testLun, which is associated with the new pool.

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request POST https://10.108.53.216/api/types/job/instances?timeout=0

Request body {
 "tasks": [{
 "object": "pool",
 "action": "create",
 "name": "poolStep",
 "parametersIn": {
 "addRaidGroupParameters": [{
 "raidType": 1,
 "numDisks": 5,
 "stripeWidth": 5,
 "dskGroup": {
 "id": "dg_18"
 }
 }],
 "name": "POOL40388"
 }
 },
 {
 "object": "storageResource",
 "action": "createLun",
 "name": "lunStep",
 "parametersIn": {
 "lunParameters": {
 "pool": "@poolStep.id",
 "isThinEnabled": 0,
 "size": 1073741824
 },
 "name": "testLun"
 }
 }],
 "description": "CreateLUN"
}

Response body
for a successful
response

{
 "@base": "https://10.103.73.112/api/instances/job",
 "updated": "2016-03-03T15:56:17.785Z",
 "links": [{
 "rel": "self",
 "href": "/B-42"
 }],
 "content": {
 "id": "B-42"
 }
}

NOTE: For this example, a successful return code is a 201 Created HTTP status code, because

the request is a synchronous request.

Related references

Request parameters

76 Creating other types of requests

HTTP status codes

Minimal instance resource

Message entity

Related tasks

Creating a resource instance

Modifying a resource instance

Deleting a resource instance

Performing a class-level resource-specific action

Performing an instance-level resource-specific action

Working with asynchronous requests

Working with asynchronous requests
By default, all REST API requests are synchronous, which means that the client/server connection stays open until the request
completes and the response is returned.

Alternatively, you can make any active management request (one that changes the system rather than just querying it) into an
asynchronous request by appending a timeout parameter to the HTTP request header. Asynchronous requests are more reliable
than synchronous requests. With an asynchronous request, you start a job, and the server returns an associated job resource
instance almost immediately, if you use timeout=0. You can query the job resource instance when convenient to get the HTTP
response code and response body for the request. If you create a synchronous request and the network connection is lost, or
the REST client or server goes down while the request is processing, there is no way to obtain the request status.

Syntax

As the first parameter on the request URI:

?timeout=<seconds>
As a subsequent parameter on the request URI:

&timeout=<seconds>

Usage

The following considerations apply to asynchronous requests:

● A valid asynchronous request returns a 202 Accepted HTTP status code and a minimal job resource instance in the
response body.

● Depending on the type of error, an invalid asynchronous request can either return immediately or return after the timeout
with the appropriate error code in the response header and a message entity in the response body.

To view the status of an asynchronous request, retrieve data for the appropriate job resource instance. For example, if an
asynchronous modify user request returns a job resource instance with an ID of N-67, you can use an instance query to
retrieve the asynchronous request data from this job resource.

Example 1: Creating an asynchronous request

The following example uses the timeout request parameter on a request to modify a user instance.

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Creating other types of requests 77

Request POST https://10.108.53.216/api/instances/user/user_1/action/modify?
timeout=0

Request body {
 "role":"operator"
 }

Response body {
 "id": "N-116",
 "state": 2,
 "instanceId": "root/emc:EMC_UEM_TransactionJobLeaf%InstanceID=N-116",
 "description": "job.uisconfig.job.ModifyUser",
 "stateChangeTime": "2015-11-20T18:53:03.875Z",
 "submitTime": "2015-11-20T18:53:03.680Z",
 "estRemainTime": "00:01:40.000",
 "progressPct": 0,
 "tasks": [
 {
 "state": 0,
 "name": "job.uisconfig.job.ModifyUser"
 }
],
 "owner": "System",
 "clientData": "",
 "methodName": "user.modify",
 "isJobCancelable": false,
 "isJobCancelled": false
}

Example 2: Viewing an asynchronous request

The following example shows the job instance associated with the request shown above:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.53.216/api/instances/job/N-116?
fields=description,tasks

Request body Empty.

Response body {
 "@base": "https://10.108.53.216/api/instances/job",
 "updated": "2015-11-20T18:59:23.635Z",
 "links": [
 {
 "rel": "self",
 "href": "/N-116"
 }
],
 "content": {
 "id": "N-116",
 "description": "Modify User",
 "tasks": [
 {
 "state": 2,
 "name": "job.uisconfig.job.ModifyUser172",
 "description": "Modify User",
 "messages": [
 {
 "errorCode": 0,
 "messages": [

78 Creating other types of requests

 {
 "locale": "en_US",
 "message": "Success"
 }
]
 }
]
 }
]
 }
}

Related references

Request parameters

HTTP status codes

Job resource instance

Message entity

Related tasks

Creating a resource instance

Modifying a resource instance

Deleting a resource instance

Performing a class-level resource-specific action

Performing an instance-level resource-specific action

Creating an aggregated management request

Creating other types of requests 79

Downloading and uploading files

Topics:

• Downloading and uploading NAS server configuration files
• Downloading and uploading x.509 certificates
• Downloading configuration capture files
• Downloading service information files
• Downloading import session report files
• Downloading Data at Rest Encryption files
• Uploading upgrade candidates and language packs
• Uploading license files

Downloading and uploading NAS server configuration
files
You can download or upload the following types of NAS server configuration files:

LDAP schema When configuring NAS server LDAP settings, the NAS server attempts to connect to the LDAP server
and detect the default LDAP schema, based on the LDAP type. You can download the default schema file,
customize it, and then upload the customized file to the NAS server. If the schema is valid, it is applied to
the NAS server configuration.

LDAP
Configuration
Authority (CA)
certificate

If the storage system uses LDAPS (LDAP using SSL) to communicate with the LDAP server, you might be
required to upload the CA certificate to the NAS server. If the verification fails, or the LDAP server does
not present a certificate, the connection is refused.

User mapping
file (applies
to multiprotocol
NAS servers
only)

When configuring a multiprotocol NAS server, the following types of user mappings are required:
● A Windows user must map to a corresponding Unix user in order to access a file system.
● A Unix user must map to a corresponding Windows user when using NFS to access a file system

configured with a Windows access policy.
NOTE: A Unix user does not have to map to a corresponding Windows user when using NFS to

access a file system configured with a Unix or native access policy.

The system automatically maps a Windows user to a Unix user when the same user name is defined to
the Unix Directory Service (UDS) and Windows Active Directory (AD). If the user names are different,
you can download a user mapping file template, customize it, and upload the customized file to the NAS
server.

Antivirus
configuration
(applies to
multiprotocol and
SMB NAS
servers)

Common AntiVirus Agent (CAVA) provides an antivirus solution to the client using a NAS server, and
uses third-party antivirus software to identify and eliminate known viruses before they infect files on the
storage system. You can download the current antivirus configuration file, customize it, and then upload
the customized file to the NAS server. If the file is valid, it is supplied to the NAS server configuration.

Local files - users The user password file is a type of local file that defines which users can access the NAS server. It is
used for resolving Unix users for NFS and FTP. Each line of the user password file contains the username,
encrypted password (optional), user ID (UID) and group ID (GID). You can download the current user
password file, customize it, and then upload the customized file to the NAS server. If the file is valid, it is
supplied to the NAS server configuration.

NOTE: If a directory service is enabled, the local files are checked before the directory service.

9

80 Downloading and uploading files

Local files -
groups

The groups file is a type of local file that defines the groups to which users belong. Each line of the group
file contains the group name, GID and list of UIDs of group members. You can download the current group
file, customize it, and then upload the customized file to the NAS server. If the file is valid, it is supplied to
the NAS server configuration.

NOTE: If a directory service is enabled, the local files are checked before the directory service.

Local files -
hosts

The hosts file is a type of local file that defines which hosts can access the NAS server. Each line of the
hosts file contains the IP address, corresponding host name and an optional alias. You can download the
current hosts file, customize it, and then upload the customized file to the NAS server. If the file is valid,
it is supplied to the NAS server configuration.

NOTE: If a directory service is enabled, the local files are checked before the directory service.

Local files -
network groups

The network groups file is a type of local file that contains a list of network group names with the list
of hostnames for hosts belonging to the group. In addition to mapping hosts to network groups, it also
maps users to network groups. Each line of the network group file contains the group name and members
such as hosts and other groups. You can download the current network groups file, customize it, and
then upload the customized file to the NAS server. If the file is valid, it is supplied to the NAS server
configuration.

NOTE: If a directory service is enabled, the local files are checked before the directory service.

User mapping
diagnostics
report (applies
to multiprotocol
NAS servers
only)

The user mapping diagnostics report is generated to confirm that the user mappings are properly
configured. It also lists both resolved and unresolved users. You can generate a user mapping diagnostic
report before enabling multiprotocol sharing or checking a multiprotocol NAS server for mapping issues.
You can only download the generated user mapping diagnostics report after it is created. You cannot
upload an existing user mapping diagnostics report.

Kerberos key
table

The Kerberos key table (keytab) file is required for secure NFS services with Linux or Unix Kerberos
Key Distribution Center (KDC). It contains service principal names (SPNs), encryption methods, and keys
for secure NFS service. You can download the current keytab file, customize it, and then upload the
customized file to the NAS server. If the file is valid, it is supplied to the NAS server configuration.

NOTE: A DNS server is required to join or unjoin a Kerberos server to a realm.

Local files - home
directory

The homedir configuration file is defined with user names and home directories. Each line of the homedir
configuration file contains a Windows domain (optional), a user name, a home directory related to the
NAS server root and non-mandatory options. You can download the current homedir file, customize it,
and then upload the customized file to the NAS server. If the file is valid, it is supplied to the NAS server
configuration.

NOTE: If a directory service is enabled, the local files are checked before the directory service.

Syntax for downloading a configuration file from a NAS server

To download a configuration file from a NAS server to the local host, use the following request components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true

Operation GET

URI pattern /download/<protocolType>/nasServer/<nasServerId>

where:
● <protocolType> is the type of configuration file to download. Values are:

○ 1 - Ldap_Configuration (LDAP schema file)

○ 2 - Ldap_CA_Certificate

Downloading and uploading files 81

○ 3 - Username_Mappings
○ 4 - Virus_Checker_Configuration
○ 5 - Users
○ 6 - Groups
○ 7 - Hosts
○ 8 - Netgroups
○ 9 - User_Mapping_Report
○ 10 - Kerberos_Key_Table
○ 11 - Homedir

● <nasServerId> is the unique identifier of the NAS server from which you want to download a
configuration file.

Body Empty.

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Syntax for uploading a configuration file from a NAS server

To upload a configuration file from the local host to a NAS server, use the following request components:

Header Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true

Operations POST

URI pattern /upload/<protocolType>/nasServer/<nasServerId>

where:
● <protocolType> is the type of configuration file to upload. Values are:

○ 1 - Ldap_Configuration (LDAP schema file)

○ 2 - Ldap_CA_Certificate
○ 3 - Username_Mappings
○ 4 - Virus_Checker_Configuration
○ 5 - Users
○ 6 - Groups
○ 7 - Hosts
○ 8 - Netgroups
○ 10 - Kerberos_Key_Table
○ 11 - Homedir

● <nasServerId> is the unique identifier of the NAS server to which you want to upload a
configuration file.

Body None.

Usage You must POST the configuration file using a multipart/form-data format as if from a simple web page
form, like that shown in the following example:

<html>
 <body>
 <form enctype="multipart/form-data" method="post"
 action="https://<IP_address>/upload/<protocol_type>/nasServer/
<nas_server_id>">
 <input type="file" "name="filename"/>
 <input type="submit"/>
 </form>
 </body>

82 Downloading and uploading files

</html
>

A successful upload request returns 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn or
5nn HTTP status code in the response header and a message entity in the response body.

Example 1: Downloading an LDAP schema file from a NAS server

The following example downloads an LDAP schema file from the NAS server that has an id of nas_1 to the local host:

Header Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.253.216/download/1/nasServer/nas_1

Request body Empty.

Response body
(raw) for
a successful
response

Contains the downloaded LDAP schema file.

Example 2: Uploading an LDAP schema file to a NAS server

The following example uploads LDAP schema file ldap1.conf from the local host to NAS server nas_1:

Header Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <body>
 <form enctype="multipart/form-data" method="post"
 action="https://10.108.253.216/upload/1/nasServer/nas_1">
 <input type="file" name="filename"/>
 <input type="submit"/>
 </form>
 </body>

filename="ldap1.conf"

Request body Empty.

Response body
(raw) for
a successful
response

Empty.

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Downloading and uploading x.509 certificates

Downloading Data at Rest Encryption files

Downloading and uploading files 83

Uploading upgrade candidates and language packs

Uploading license files

Downloading and uploading x.509 certificates
You can download and upload x.509 certificates.

Syntax for downloading an x.509 certificate

To download an x.509 certificate file from the storage system to the local host, use the following request components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true

Operation GET

URI pattern /download/x509Certificate/<cert_id>

where <cert_id> is the unique identifier of the x.509 certificate to download.

Body Empty.

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Syntax for uploading a configuration file from a NAS server

To upload an x.509 certificate from the local host to the storage system, use the following request components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true

Operations POST

URI pattern /upload/x509Certificate

Body See the Usage row.

Usage You must POST the certificate file using a multipart/form-data format as if from a simple web page form,
like that shown in the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <body>
 <form enctype="multipart/form-data" method="post"
 action="https://<IP_address>/upload/x509Certificate">
 <input type="file" name="filename"/>
 <input type="text" name="paramMap"/>
 <input type="submit"/>
 </form>
 </body>
</html>

where paramMap is in JSON format and is defined by the following attributes:

84 Downloading and uploading files

● type - Certificate type, as defined by the CertifcateTypeEnum enumeration.

● service - Service with which the certificate is associated, as defined by the ServiceTypeEnum
enumeration.

● scope (optional) - Certificate scope, as defined by the certificateScope enumeration.

● passphrase - Pass phrase used to decrypt the private key. This attribute is required if the file
contains a private key.

For a list of enumeration values, see the Unisphere Management REST API Reference Guide.

A successful upload request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn or
5nn HTTP status code in the response header and a message entity in the response body.

Example 1: Downloading an x.509 certificate

The following example downloads the vasa_http-vc1-cacert-1 certificate file to the local host:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.53.216/download/x509Certificate/vasa_http-vc1-
servercert-1

Request body Empty.

Response body
(raw) for
a successful
response

Contains the downloaded x.509 certificate file.

Example 2: Uploading an x.509 certificate file to a NAS server

The following example uploads certificate1.pem to authorize communication between NAS server nas_0 and the VASA
provider.

Headers Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request <html>
 <body>
 <form enctype="multipart/form-data" method="post"
 action="https://10.108.253.216/upload/x509Certificate">
 <input type="file" name="filename"/>
 <input type="text" name="paramMap"/>
 <input type="submit"/>
 </form>
 </body>
filename="certificate1.pem"
paramMap={"type":1,"service":2, "passphrase":"ddd","scope":
{"nasServer":"nas_0"}}

Request body Empty.

Response body
(raw) for
a successful
response

Empty.

Downloading and uploading files 85

Example 3: Uploading an x.509 certificate file to an LDAP server

The following example uploads certificate1.cer to authenticate a connection to an LDAP server.

Headers Accept: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request <html>
 <body>
 <form enctype="multipart/form-data" method="post"
action="https://10.108.253.216/upload/x509Certificate">
 <input type="file" name="filename"/>
 <input type="text" name="paramMap"/>
 <input type="submit"/>
 </form>
 </body>
filename="certificate.cer"
paramMap={"type":2,"service":3}

Request body Empty.

Response body
(raw) for
a successful
response

Empty.

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Downloading and uploading NAS server configuration files

Downloading Data at Rest Encryption files

Uploading upgrade candidates and language packs

Uploading license files

Downloading configuration capture files
You can download a specified configuration capture HTML or tar file.

Syntax for downloading a configuration capture file

To download a configuration capture file, use the following request components:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Operation GET

URI pattern /download/configCaptureResult/<cc_id>

where <cc_id> is the unique identifier of the configuration capture file to download.

86 Downloading and uploading files

Body Empty.

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Example 1: Downloading a configuration capture file to the local host

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.53.216/download/configCaptureResult/m20190412_025541:h

Request body Empty.

Response body
(raw) for
a successful
response

Contains the downloaded configuration capture file.

Downloading service information files
You can download the existing service information files.

Syntax for downloading service information files

To download service information files, use the following request components:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Operation GET

URI pattern /download/dataCollectionResult/<dc_id>

where <dc_id> is the unique identifier of the service information file to download.

Body Empty.

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Example 1: Downloading service information files to the local host

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.53.216/download/dataCollectionResult/
m2019-04-12_02_47_19:Unity_300

Request body Empty.

Response body
(raw) for

Contains the downloaded data collection file.

Downloading and uploading files 87

a successful
response

Downloading import session report files
You can download a ZIP file that contains all import session information.

Syntax for downloading an import session report file

To download an import session report file, use the following request components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true

Operation GET

URI pattern /download/importSession/<im_id>/<report_file_name>

where <im_id> is the unique identifier of the configuration capture to download.

where <report_file_name> is the report file named by user to download.

Body Empty.

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Example 1: Downloading an import session report file to the local host

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.53.216/download/importSession/import_1/
report_name_1.zip

Request body Empty.

Response body
(raw) for
a successful
response

Contains the downloaded import session report file.

Downloading Data at Rest Encryption files
You can download the following files to manage Data at Rest Encryption:

● Encrypted copy of the keystore file, for backing up to an external location. Key manager audit logs and checksum files
together in a single .tar file, for monitoring encryption events

● Checksum file for a specified audit log, for verifying the integrity of the previously-downloaded audit log. The hash in the
checksum file should match the hash in the checksum file for the specified audit log.

88 Downloading and uploading files

Syntax for downloading the keystore file

To download the keystore file from the storage system to the local host, use the following request components:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Operation GET

URI pattern /download/encryption/keystore

Body Empty.

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Syntax for downloading key manager audit logs and checksum files
together

To download the key manager audit logs and checksum files together as a single .tar file from the storage system to the local
host, use the following request components:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Operations GET

URI pattern /download/encryption/auditLogAndChecksum?date=<YYYY-mm>

where <YYYY-mm> is the year and month of the audit log to download. If no date is specified, the entire
audit log is downloaded.

Body Empty.

A successful download request returns 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn or
5nn HTTP status code in the response header and a message entity in the response body.

Syntax for downloading the checksum file for a specified audit log

To download the checksum file for a specified audit log from the storage system to the local host, use the following request
components:

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Operations GET

URI pattern /download/encryption/checksum?audit_log=<audit_log_file_name>

where <audit_log_file_name> is the file name of the previously downloaded audit log. The audit log
file has a .log suffix.

Body Empty.

Downloading and uploading files 89

A successful download request returns a 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn
or 5nn HTTP status code in the response header and a message entity in the response body.

Example 1: Downloading the keystore file

The following example downloads the keystore file to the local host.

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.53.216/download/encryption/keystore

Request body Empty.

Response body
(raw) for
a successful
response

Contains the downloaded keystore file.

Example 2: Downloading audit logs and checksum files

The following example downloads audit logs and checksum files for November, 2015 to the local host as a single .tar file.

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.253.216/download/encryption/auditLogAndChecksum?
date=2015-11

Request body Empty.

Response body
(raw) for
a successful
response

A tar file that contains the downloaded key manager audit log and checksum files.

Example 3: Downloading a checksum file for a specified audit log

The following example downloads the checksum file for audit log
APM00143414369_2015_02_03_19_50_38_0000000000000001_000000000000002C.log to the local host.

Headers Accept: application/json
X-EMC-REST-CLIENT: true

Request GET https://10.108.253.216/download/encryption/checksum ?audit_log=
APM00143414369_2015_02_03_19_50_38_0000000000000001_000000000000002C.log

Request body Empty.

Response body
(raw) for
a successful
response

A file that contains the downloaded checksum file.

90 Downloading and uploading files

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Downloading and uploading NAS server configuration files

Downloading and uploading x.509 certificates

Uploading upgrade candidates and language packs

Uploading license files

Uploading upgrade candidates and language packs
You can upload upgrade candidates (software or firmware) and language packs to the storage system to make them available to
install. To install an uploaded file, create a new candidateSoftwareVersion instance.

NOTE: When you upload an upgrade candidate file onto the storage system, it replaces the previous version. There can only

be one upgrade candidate on the system at a time.

For information about the candidateSoftwareVersion resource type, see the Unisphere Management REST API

Reference Guide.

Syntax

To upload a system software upgrade candidate or language pack file, use the following components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operation POST

URI pattern /upload/files/types/candidateSoftwareVersion

Body Empty.

Usage You must post the upgrade file using a multipart/form-data format as if from a simple web page form, like
that shown in the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <body>
 <form enctype="multipart/form-data" method="post"
 action="https://<IP_address>/upload/file/types/
candidateSoftwareVersion">
 <input type="file" name="filename>"/>
 <input type="submit"/>
 </form>
 </body>
</html>

A successful upload request returns 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn or
5nn HTTP status code in the response header and a message entity in the response body.

Downloading and uploading files 91

Example

The following example uploads the upgrade candidate file update1.gpg from the local host to the storage server:

Header Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request <html>
 <body>
 <form enctype="multipart/form-data" method="post" action="https://
10.108.253.216/upload/files/types/candidateSoftwareVersion
 <input type="file" name="filename"/>
 <input type="submit"/>
 </form>
 </body>

filename="update1.gpg"

Request body Empty.

Response body
(raw) for
a successful
response

Empty.

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Downloading and uploading NAS server configuration files

Downloading and uploading x.509 certificates

Downloading Data at Rest Encryption files

Uploading license files

Uploading license files
You can upload license files to the storage system to make them available to install. To install an uploaded license file, create a
new instance of the license resource type.

For information about the license resource type, see the Unisphere Management REST API Reference Guide.

Syntax

To upload a license file, use the following components:

Headers Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Operations POST

92 Downloading and uploading files

URI pattern /upload/license

Body Empty.

Usage You must POST the upgrade file using a multipart/form-data format as if from a simple web page form,
like that shown in the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <body>
 <form enctype="multipart/form-data" method="post"
 action="https://<IP_address>/upload/license">
 <input type="file" name="filename>"/>
 <input type="submit"/>
 </form>
 </body>
</html>

A successful upload request returns 200 OK HTTP status code. If the request does not succeed, the server returns a 4nn or
5nn HTTP status code in the response header and a message entity in the response body.

Example

The following example uploads the license file license1.lic from the local host to the storage server:

Header Accept: application/json
Content-Type: application/json
X-EMC-REST-CLIENT: true
EMC-CSRF-TOKEN: <token>

Request <html>
 <body>
 <form enctype="multipart/form-data" method="post" action="https://
10.108.253.216/upload/license"
 <input type="file" name="filename"/>
 <input type="submit"/>
 </form>
 </body>
filename="license1.lic"

Request body Empty.

Response body
(raw) for
a successful
response

Empty.

Related references

Request parameters

HTTP status codes

Message entity

Related tasks

Downloading and uploading NAS server configuration files

Downloading and uploading x.509 certificates

Downloading Data at Rest Encryption files

Uploading upgrade candidates and language packs

Downloading and uploading files 93

Perl example

Topics:

• Example of creating multiple standalone LUNs

Example of creating multiple standalone LUNs
The following example is a Perl script that uses the REST API to consecutively create multiple standalone LUNs. To run the
script, you must install the relevant Perl libraries listed at the top of the file.

#!/usr/bin/perl
#Required Debian Packages: apt-get install perl libwww-perl libjson-perl

use strict;
use LWP::UserAgent;
use HTTP::Cookies;
use JSON;
use Data::Dumper;

my $IP_ADDR = '';
my $USER = '';
my $PASS = '';
my $EMC_CSRF_TOKEN;

use constant {
 GET => 'GET',
 POST => 'POST',
 DELETE => 'DELETE',
};

my $ua = LWP::UserAgent->new(
 ssl_opts => { SSL_verify_mode => 'SSL_VERIFY_NONE'},
 cookie_jar => {}
);
my $json = JSON->new->allow_nonref();

sub request{
 #http://perl101.org/subroutines.html
my $type = $_[0];
 my $url = $_[1];
 my $post_data = $_[2];

 #Does an initial get request to make sure a login is done beforehand
 if(!defined($EMC_CSRF_TOKEN) && $type ne GET){
 #First connection
 request(GET, 'types/loginSessionInfo');
 }

 # set custom HTTP request header fields
 #my $req = HTTP::Request->new(GET => 'https://'.$IP_ADDR.'/api/types/'.$url.'/
instances');
 #http://xmodulo.com/how-to-send-http-get-or-post-request-in-perl.html
 my $req = HTTP::Request->new;
 $req->uri('https://'.$IP_ADDR.'/api/'.$url);
 $req->method($type);

 $req->header('content-type' => 'application/json');
 $req->header('accept' => 'application/json');
 $req->header('X-EMC-REST-CLIENT' => 'true');
 if(defined($EMC_CSRF_TOKEN)){

10

94 Perl example

 $req->header('EMC-CSRF-TOKEN' => $EMC_CSRF_TOKEN);
 }

 #This is the first request, lets login!
 if($ua->cookie_jar->as_string eq ""){
 $req->authorization_basic($USER, $PASS);
 }

 if (defined $post_data){
 $req->content($json->encode($post_data));
 }

 my $resp = $ua->request($req);

 #FOR DEBUG - PRINTS HEADERS
 #print $resp->headers_as_string;
 #PRINT COOKIES
 #print $ua->cookie_jar->as_string;

 if ($resp->is_success) {

 if(!defined($EMC_CSRF_TOKEN)){
 $EMC_CSRF_TOKEN = $resp->header('EMC-CSRF-TOKEN');
 }

 my $message = $resp->decoded_content;
 #print "Received reply: $message\n";
 return $json->decode($message);

 } else {
 print "HTTP error code: ", $resp->code, "\n";
 print "HTTP error message: ", $resp->message, "\n";
 return 0;
 }

 #print $ua->cookie_jar->as_string;
}

sub getInputLine{
 my $lowercase = $_[0];
 my $question = $_[1];
 my $cmp = $_[2];

 if(defined $question){
 print $question;
 }

 my $input = <STDIN>;
 chomp($input);
 $input = $lowercase ? lc($input) : $input;
 #print $input;
 if(defined $cmp){
 return $input eq $cmp;
 }else{
 return $input;
 }
}

print "Enter IP and credentials for your storage system.\n";
$IP_ADDR = getInputLine(1, 'IP Address: ');
$USER = getInputLine(0, 'Username: ');
$PASS = getInputLine(0, 'Password: ');

do{
 my $pool_id = getInputLine(1, 'CLI_ID of pool to add LUN to: ');
 my $lun_name = getInputLine(0, 'LUN Name: ');
 my $lun_size = getInputLine(1, 'LUN Size (Gigabytes): ');
 my $lun_isThinEnabled = getInputLine(1, 'LUN type (thick/thin): ', 'thin');

 my $resp = request(POST, 'types/storageResource/action/createLun',
 {
 "name" => $lun_name,
 "lunParameters" => {"pool" => {"id" => $pool_id},

Perl example 95

 "size" => $lun_size*1024*1024*1024,
 'isThinEnabled' => ($lun_isThinEnabled ? 'true' : 'false')},
 #'hostAccess' =>
 });

 print $resp eq 0 ? "FAILED TO CREATE LUN $lun_name!\n" : "LUN $lun_name sucessfully
created!\n";
}while(getInputLine(1, 'Would you like to create another LUN? (y/n) ', 'y'));

#Creates a 20GB LUN
#request(POST, 'types/storageResource/action/createLun', {"name" => "LUN-RestAPI",
"lunParameters" => {"pool" => {"id" => "pool_1"}, "size" => 21474836480}});

96 Perl example

	cover_titan5000_A4.pdf
	T5000_unity-restapi-prog.pdf
	Dell EMC Unity™ Family Unisphere® Management REST API Programmer's Guide
	Contents
	Additional resources
	Welcome
	The Unisphere Management REST API
	Examples in this guide

	REST API overview
	Resource-oriented architecture and REST
	JSON data exchange format

	JSON request components
	HTTP request headers
	Request parameters
	URI patterns
	Request body

	JSON response components
	HTTP response headers
	JSON response body
	HTTP status codes
	Collection resource
	Instance resource
	Minimal instance resource
	Empty response body
	Job resource instance
	Message entity

	JSON encodings
	JSON base value encodings
	JSON list encoding

	Preparing to make a request
	Connecting and authenticating
	Retrieving basic system information

	Querying a resource
	Retrieving data for multiple occurrences in a collection
	Retrieving data for a specified resource instance
	Omitting metadata from responses
	Specifying the attributes to return in a query response
	Paginating response data
	Filtering response data
	Sorting response data
	Aggregating response data
	Defining new attributes from existing attributes
	Extending queries to include related data
	Localizing response text

	Creating other types of requests
	Creating a resource instance
	Modifying a resource instance
	Deleting a resource instance
	Performing a class-level resource-specific action
	Performing an instance-level resource-specific action
	Creating an aggregated management request
	Working with asynchronous requests

	Downloading and uploading files
	Downloading and uploading NAS server configuration files
	Downloading and uploading x.509 certificates
	Downloading configuration capture files
	Downloading service information files
	Downloading import session report files
	Downloading Data at Rest Encryption files
	Uploading upgrade candidates and language packs
	Uploading license files

	Perl example
	Example of creating multiple standalone LUNs

