

QDD-2X100G-LR4-AO

Juniper Networks® QDD-2X100G-LR4 Compatible TAA 2x100GBase-LR4 QSFP28-DD Transceiver (SMF, 1295nm to 1309nm, 10km, 2xCS, DOM)

Features

- Supports 206Gbps
- 8x25G electrical interface
- Dual CS Connector
- 8x25Gbps DFB-based LAN-WDM transmitter
- PIN and TIA array on the receiver side
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- RoHS-6 compliant and Lead Free
- I2C interface with integrated Digital Diagnostic Monitoring
- Single +3.3V power supply and power dissipation

Applications

- 200GBase Ethernet
- Access and Enterprise

Product Description

This Juniper Networks® QDD-2X100G-LR4 compatible QSFP28-DD transceiver provides 2x100GBase-LR4 throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1295nm to 1309nm via a 2xCS connector. It is guaranteed to be 100% compatible with the equivalent Juniper Networks® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

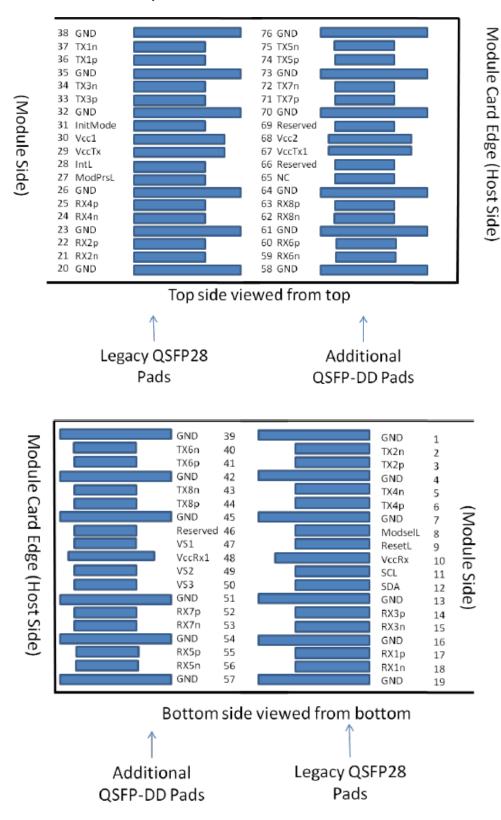
Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		3.6	V
Storage Temperature	TS	-40		85	°C
Operating Case Temperature	Тс	0	25	70	°C
Relative Humidity (non-condensing)	RH	5		85	%
Receiver Damage Threshold, per lane	Rxdmg	5.5			dBm

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes		
Power Supply Voltage	Vcc	3.135	3.3	3.465	V			
Power Dissipation	Pd			8	W			
Instantaneous peak current	lcc_ip			3200	mA			
Sustained peak current	lcc_sp			2640	mA			
Steady state current	Icc			2308	mA			
Transmitter								
Differential data input swing per lane				900	mVp-p			
Input Impedance (Differential)	Zin			10	%			
Stressed Input Parameters	Stressed Input Parameters							
Eye width		0.46			UI			
Applied pk-pk sinusoidal jitter		IEEE 802.3bm Tab	ole 88-13					
Eye height		95			mV			
DC common mode voltage		-350		2850	mV			
Receiver								
Differential output amplitude		200		900	mV _{p-p}			
Output Impedance (Differential)	Zout			10	%			
Output Rise/Fall Time	t _r /t _f	12			ps	20%~80%		
Eye width		0.57			UI			
Eye height differential		228			mV			
Vertical eye closure				5.5	dB			

Optical Characteristics


Parameter	Symbol	Min	Typical	Max	Unit	Notes
Transmitter						
Signaling Speed per Lane	BRAVE		25.78		Gbps	
Data Rate Variation		-100		+100	ppm	
Lane_1/5 Center Wavelength	λC1	1294.53	1295.56	1296.59	nm	
Lane_2/6 Center Wavelength	λC2	1299.02	1300.05	1301.09	nm	
Lane_3/7 Center Wavelength	уС3	1303.54	1304.58	1305.63	nm	
Lane_4/8 Center Wavelength	λC4	1308.09	1309.14	1310.19	nm	
Total Average Output Power each optical interface	Ро			10.5	dBm	
Average Launch Power each Lane	Peach	-4.3		4.5	dBm	1
Transmit OMA each Lane	TxOMA	-1.3		4.5	dBm	2
Launch power in OMA minus TDP, each lane	OMA-TDP	-2.3			dBm	
Transmitter and Dispersion Penalty per Lane	TDP			2.2	dB	
Side Mode Suppression Ratio	SMSR	30			dB	
Optical Return Loss Tolerance				20	dB	
Transmitter Reflectance				-12	dB	3
Extinction Ratio	ER	4			dB	
Eye Mask {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0	{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}			4
Receiver						
Signaling Speed per Lane	BRAVE		25.78		Gbps	
Data Rate Variation		-100		+100	ppm	
Damage threshold	Rxdmg	5.5			dBm	
Lane_1/5 Center Wavelength	λC1	1294.53	1295.56	1296.59	nm	
Lane_2/6 Center Wavelength	λC2	1299.02	1300.05	1301.09	nm	
Lane_3/7 Center Wavelength	уС3	1303.54	1304.58	1305.63	nm	
Lane_4/8 Center Wavelength	λC4	1308.09	1309.14	1310.19	nm	
Average receive power	Rxpow	-10.6		4.5	dBm	5
Receive Power (OMA) per Lane	RxOMA			4.5	dBm	
Unstressed Receiver Sensitivity (OMA) per Lane	Rxsens			-8.6	dBm	6
Stressed Receiver Sensitivity (OMA) per Lane	RXSRS			-6.8	dBm	7
Optical Return Loss	ORL			-26	dB	
Conditions of Stress Receiver Sensitivity Test						
Vertical Eye Closure Penalty	VECP	1.8			dB	8

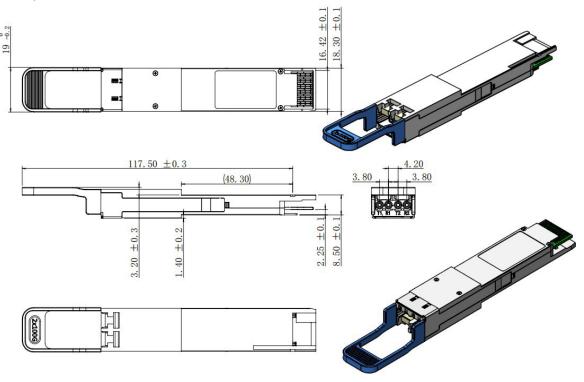
Stressed J9 Jitter	J9	0.47		UI	8
LOS Assert	LOSA	-25		dBm	
LOS De-Assert	LOSD		-12	dBm	
LOS Hysteresis		0.5		dB	

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDP < 1.0dB, the OMA (min) must exceed this value.
- 3. Transmitter reflectance is defined looking into the transmitter.
- 4. Hit ratio of 5x10⁻⁵
- 5. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 6. Receiver sensitivity (OMA), each lane (max) is informative.
- 7. Measured with conformance test signal at TP3 for BER = 10^{-12} .
- 8. Vertical eye closure penalty, stressed eye J2 Jitter, stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

QSFP-DD Transceiver Electrical Pad Layout

Pin Descriptions


	Descriptions				
Pin	Logic	Symbol	Name/Descriptions	Plug Sequence 4	Ref.
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	LPMode	Low Power Mode	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	

38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

Notes:

- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 4. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.
- 3. All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.
- 4. Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A,3B.

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070