•addon

MCP7H00-G02AR30L-AO

Mellanox[®] MCP7H00-G02AR30L Compatible TAA Compliant 100GBase-CU QSFP28 to 2xQSFP28 Direct Attach Cable (Passive Twinax, 2.5m)

Features

- QSFP Module Complaint to SFF-8661
- Enable (4x25.78)100Gbps Transmission
- Transmission Data Rate up to 25.78 Gbps per Channel
- Operating Temperature: 0 to 70 Celcius
- RoHS Complaint and Lead-Free
- Built in EEPROM Functions

Applications

• Switch, Storage, Server

Product Description

This is a Mellanox[®] Compatible 100GBase-CU QSFP28 to 2xQSFP28 direct attach cable that operates over passive copper with a maximum reach of 2.5m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 012624

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Storage Temperature	Tstg	-40		85	°C
Operating Temperature	Тс	0		70	°C
Relative Humidity	RH	5		85	%
Data Rate			100		Gbps

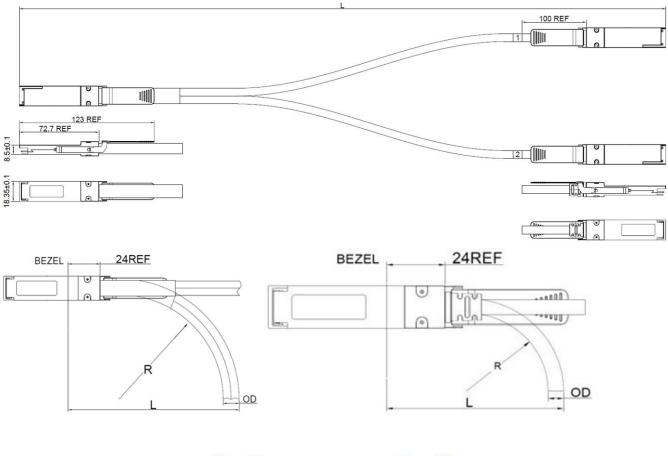
Electrical Specifications

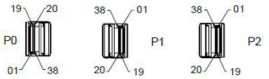
Parameter	Symbol	Min.	Тур.	Max.	Unit
Resistance	Rcon			3	Ω
Insulation Resistance	Rins			10	MΩ
Raw Cable Impedance	Zca	95	100	105	Ω
Mated Connector Impedance	Zmated	85	100	115	Ω
Insertions Loss at 12.89 GHz	SDD21	8		22.48	dB
Return Loss at 12.89GHz	SDD11/22	$ \begin{array}{c c} \text{Return}_{\text{Loss}(f) \geq} & \left\{ \begin{array}{c} 16.5 - 2 \sqrt{f} & 0.5 \le f < 4.1 \\ 10.66 - 14 \log_{10}(f / 5.5) & 4.1 \le f \le 19 \end{array} \right\} \end{array} $			dB
Differential to Common-Mode Return Loss	SCD11/22	$\begin{array}{c c} \text{Return}_{\text{Loss}(f) \geq} & \left\{ \begin{array}{c} 22 \cdot (20/25.78) f & 0.01 \leq f \leq 12.89 \\ 15 \cdot (6/25.78) f & 12.89 \leq f \leq 19 \end{array} \right\} \end{array}$			dB
Differential to Common-Mode Conversion Loss	SCD21- SDD21	Conversion_Loss(f) \geq	10 0.0 27-(29/22)f 0.0 6.3 15	01≤f<12.89 01≤f<15.7 .7≤f≤19	dB
Minimum COM	СОМ	3			dB

Pin	Logic	Symbol	Name/Descriptions	Plug Sequence	Ref.
1		GND	Module Ground.	1	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	3	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	3	
4		GND	Module Ground.	1	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	3	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	3	
7		GND	Module Ground.	1	1
8	LVTTL-I	MODSEIL	Module Select.	3	2
9	LVTTL-I	ResetL	Module Reset.	3	2
10		VccRx	+3.3V Receiver Power Supply.	2	
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	3	2
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	3	2
13		GND	Module Ground.	1	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	3	
15	CML-O	Rx3-	Receiver Inverted Data Output.	3	
16		GND	Module Ground.	1	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	3	
18	CML-O	Rx1-	Receiver Inverted Data Output.	3	
19		GND	Module Ground.	1	1
20		GND	Module Ground.	3	1
21	CML-O	Rx2-	Receiver Inverted Data Output.	3	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	1	
23		GND	Module Ground.	1	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	3	
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	3	
26		GND	Module Ground.	1	1
27	LVTTL-O	ModPrsL	Module Present. Internally pulled down to the GND.	3	
28	LVTTL-O	IntL	Interrupt output should be pulled up on the host board.	3	2
29		VccTx	+3.3V Transmitter Power Supply.	2	
30		Vcc1	+3.3V Power Supply.	2	
31	LVTTL-I	LPMode	Low-Power Mode. 3		2
32		GND	Module Ground. 1		1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	3	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	3	
35		GND	Module Ground.	1	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	3	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	3	
38		GND	Module Ground.	1	1

Notes:

- GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are references to this potential unless otherwise noted. Connect the directly to the host board signal-common ground plane.
- VccRx, Vcc1, and VccTx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host board power supply filtering is shown in host board figure. VccRx, Vcc1, and VccTx may be internally connected within the QSFP+ module in any combination. The connector pins are each for a maximum current of 500mA.


38 GND GND 1 Tx1n 37 Tx2n 2 3 36 Tx1p Tx2p 35 GND GND 4 Module Card Edge 34 Tx3n Tx4n 5 33 Тх3р Tx4p 6 7 32 GND GND 31 LPMode/TxDis ModselL 8 30 Vcc1 ResetL 9 29 VccTx VccRx 10 IntL/RxLOSL 28 SCL 11 27 ModPrsL SDA 12 26 GND GND 13 25 Rx4p **Rx**3p 14 24 Rx4n Rx3n 15 23 22 GND GND 16 Rx2p Rx1p 17 21 Rx2n Rx1n 18 20 GND GND 19 **Bottom Side** Top Side Viewed From Top Viewed From Bottom


Electrical Pin-out Details

Wire Diagram

PO)			P1&P2	
Signal	Pad		Pad	Signal	
TXIn	37		- 18	RX1n	
TXIp	36	DRAIN WIRE	17	RX1p	
RX1p	17	A-DRAIN WIRE	- 36	TXIp	
RXIn	18	THE THE	37	TXIn	
TX2n	02	A DRAIN WIRE	- 21	RX2n	
TX2p	03	U DRAIN WIRE U	- 22	RX2p	
RX2p	22	A-DRAIN WIRE	03	TX2p	
RX2n	21	D-DRWIN WIKE -D	02	TX2n	
TX3n	34		18	RXIn	
ТХЗр	33	DRAIN WIRE	17	RX1p	
RX3p	14	A DRAIN WIRE A	- 36	TXIp	
RX3n	15	D-DRAIN WIRE -DI	37	TX1n	
TX4n	05		- 21	RX2n	
TX4p	06	DRAIN WIRE	- 22	RX2p	
RX4p	25		03	TX2p	
RX4n	24	DRAIN WIRE	- 02	TX2n	
GND GF 11/04/0 6/19/2 6/32/3	7/13/ 0/23/		01	GND GRDUP 01/04/07/13/ 16/19/20/23/ 26/32/35/38	
Conner She			-	Connector Shell	

Mechanical Specifications

Cable Specifications

Parameter Length AWG		Symbol	Min.	Тур.	Max.	Unit
		L	0.5		5.0	Μ
				30		AWG
Jacket Material				PVC, Black (or Customization)		
OD	P0			12MM		
	P1 & P2			6MM		
Bend Radius	P0	R		60MM		
	P1 & P2			30MM		
Minimum Bend Radius	P0	L		96MM		
	P1 & P2			60MM		

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070