

#### MMA1T00-VS-AO

Mellanox® MMA1T00-VS Compatible 200GBase-SR4 QSFP56 Transceiver (MMF, 850nm, 100m, MPO, DOM)

#### **Features**

- Supports SFF-8636 management interface
- Multi-mode Fiber
- MPO Connector
- Hot Pluggable
- Metal with Lower EMI
- Commercial Temperature 0 to 70 Celsius
- RoHS Compliant and Lead-Free
- Excellent ESD Protection



## **Applications**

- Ethernet
- 200GBase
- Access and Enterprise

#### **Product Description**

This Mellanox® QSFP56 transceiver provides 200GBase-SR4 throughput up to 100m over multi-mode fiber (MMF) using a wavelength of 850nm via an MPO connector. It is guaranteed to be 100% compatible with the equivalent Mellanox® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."



# **Absolute Maximum Ratings**

| Parameter                  | Symbol | Min. | Тур. | Max.   | Unit | Notes |
|----------------------------|--------|------|------|--------|------|-------|
| Maximum Supply Voltage     | Vcc    | 0    |      | 3.63   | V    |       |
| Storage Temperature        | Tstg   | -40  |      | 85     | °C   |       |
| Relative Humidity          | RH     | 5    |      | 85     | %    | 1     |
| Operating Case Temperature | Тс     | 0    |      | 70     | °C   |       |
| Bit Error Ratio            | BER    |      |      | 2.4E-4 |      | 2     |

### Notes:

- 1. Non-condensing.
- 2. The typical BER is better than 1E-6 when measured with a transmitter to produce SECQ up to 3dB.

## **Electrical Characteristics**

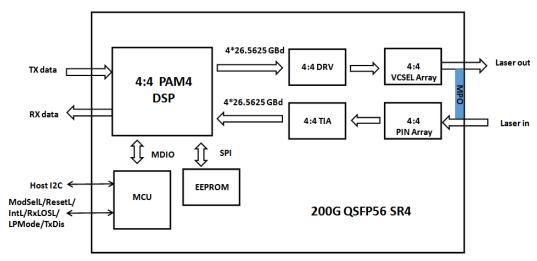
| Parameter                                              | Symbol         | Min.  | Тур. | Max.  | Unit | Notes |  |
|--------------------------------------------------------|----------------|-------|------|-------|------|-------|--|
| Module Supply Voltage                                  | Vcc            | 3.135 | 3.3  | 3.465 | V    |       |  |
| Module Supply Current                                  | Icc            |       |      | 1600  | mA   |       |  |
| Module Power Dissipation                               | P <sub>D</sub> |       |      | 5     | W    |       |  |
| Transmitter                                            |                |       |      |       |      |       |  |
| Differential Data Input Voltage Peak-<br>to-Peak Swing | VIN,pp         |       |      | 900   | mV   |       |  |
| Receiver                                               |                |       |      |       |      |       |  |
| Differential Data Output Voltage<br>Peak-to-Peak Swing | VOUT,pp        |       |      | 900   | mV   |       |  |

**Optical Characteristics** 

| Parameter                                                        | Symbol | Min. | Тур.                                 | Max.                      | Unit  | Notes |
|------------------------------------------------------------------|--------|------|--------------------------------------|---------------------------|-------|-------|
| Transmitter                                                      |        |      |                                      |                           |       |       |
| Signaling Rate Per Lane                                          | Rate   |      | 26.5625                              |                           | GBd   |       |
| Modulation Format                                                | MF     |      | PAM4                                 |                           |       |       |
| Signaling Speed Accuracy                                         | SSA    | -100 |                                      | 100                       | ppm   |       |
| Center Wavelength                                                | λ      |      | 850                                  |                           | nm    |       |
| RMS Spectral Width                                               | Δλ     |      |                                      | 0.6                       | nm    |       |
| Optical Return Loss Tolerance                                    | ORLT   |      |                                      | 12                        | dB    |       |
| Average Optical Power                                            | Pavg   | -6.5 |                                      | +4                        | dBm   |       |
| Extinction Ratio                                                 | ER     | 3    |                                      |                           | dB    |       |
| Optical Modulation Amplitude Per Lane                            | OMA    | -4.5 |                                      | +3                        | dBm   |       |
| Launch Power in OMA Outer Minus<br>TDECQ Per Lane                |        | -5.9 |                                      |                           | dBm   |       |
| Transmitter and Dispersion Eye Closure for PAM4 (TDECQ) Per Lane | TDECQ  |      |                                      | 4.5                       | dB    |       |
| TDECQ – 10*log <sub>10</sub> (Ceq) Per Lane                      |        |      |                                      | 4.5                       | dB    |       |
| Relative Intensity Noise                                         | RIN    |      |                                      | -128                      | dB/Hz |       |
| Transmitter Transition Time Per Lane                             |        |      |                                      | 34                        | ps    |       |
| Laser Off Power                                                  |        |      |                                      | -30                       | dBm   |       |
| Encircled Flux                                                   | EF     |      | ≥86% at<br>19µm<br>≤ 30% at<br>4.5µm |                           |       |       |
| Receiver                                                         |        |      |                                      |                           |       |       |
| Signaling Rate Per Lane                                          | Rate   |      | 26.5625                              |                           | GBd   |       |
| Modulation Format                                                | MF     |      | PAM4                                 |                           |       |       |
| Signaling Speed Accuracy                                         | SSA    | -100 |                                      | +100                      | ppm   |       |
| Center Wavelength                                                | λ      |      | 850                                  |                           | nm    |       |
| Average Receive Power Per Lane                                   | Pavg   | -8.4 |                                      | +4                        | dBm   |       |
| Receive Power Per Lane OMA                                       | Ро     |      |                                      | 3                         | dBm   |       |
| Receiver Reflectance                                             | RL     |      |                                      | -12                       | dB    |       |
| Receiver Sensitivity OMA Per Lane                                | S      |      |                                      | Max = (-6.5,<br>SECQ-7.9) | dBm   | 1     |
| Damage Threshold                                                 | THd    | 5    |                                      |                           | dBm   |       |

# Notes:

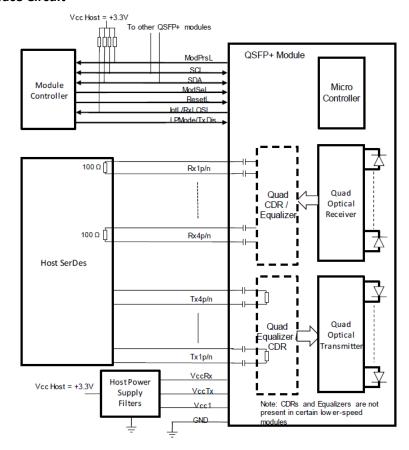
1. Receiver sensitivity is informative and defined for a transmitter with a value of SECQ up to 4.5dB.


### **Pin Descriptions**

| Pin Des | scriptions   |                                                                                           |       |
|---------|--------------|-------------------------------------------------------------------------------------------|-------|
| Pin     | Symbol       | Description                                                                               | Notes |
| 1       | GND          | Ground.                                                                                   | 1     |
| 2       | Tx2-         | Transmitter Inverted Data Input.                                                          |       |
| 3       | Tx2+         | Transmitter Non-Inverted Data Input.                                                      |       |
| 4       | GND          | Ground.                                                                                   | 1     |
| 5       | Tx4-         | Transmitter Inverted Data Input.                                                          |       |
| 6       | Tx4+         | Transmitter Non-Inverted Data Input.                                                      |       |
| 7       | GND          | Ground.                                                                                   |       |
| 8       | ModSelL      | Module Select.                                                                            |       |
| 9       | ResetL       | Module Reset.                                                                             |       |
| 10      | VccRx        | +3.3V Power Supply Receiver.                                                              | 2     |
| 11      | SCL          | 2-Wire Serial Interface Clock.                                                            |       |
| 12      | SDA          | 2-Wire Serial Interface Data.                                                             |       |
| 13      | GND          | Ground.                                                                                   |       |
| 14      | Rx3+         | Receiver Non-Inverted Data Output.                                                        |       |
| 15      | Rx3-         | Receiver Inverted Data Output.                                                            |       |
| 16      | GND          | Ground.                                                                                   | 1     |
| 17      | Rx1+         | Receiver Non-Inverted Data Output.                                                        |       |
| 18      | Rx1-         | Receiver Inverted Data Output.                                                            | 1     |
| 19      | GND          | Ground.                                                                                   | 1     |
| 20      | GND          | Ground.                                                                                   |       |
| 21      | Rx2-         | Receiver Inverted Data Output.                                                            |       |
| 22      | Rx2+         | Receiver Non-Inverted Data Output.                                                        |       |
| 23      | GND          | Ground.                                                                                   |       |
| 24      | Rx4-         | Receiver Inverted Data Output.                                                            |       |
| 25      | Rx4+         | Receiver Non-Inverted Data Output.                                                        |       |
| 26      | GND          | Ground.                                                                                   | 1     |
| 27      | ModPrsL      | Module Present.                                                                           |       |
| 28      | IntL/RxLOSL  | Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636).     |       |
| 29      | VccTx        | +3.3V Power Supply Transmitter.                                                           | 2     |
| 30      | Vcc1         | +3.3V Power Supply.                                                                       | 2     |
| 31      | LPMode/TxDis | Low-Power Mode. Optionally configurable as TxDis via the management interface (SFF-8636). |       |
| 32      | GND          | Ground.                                                                                   | 1     |
| 33      | Tx3+         | Transmitter Non-Inverted Data Input.                                                      |       |
| 34      | Tx3-         | Transmitter Inverted Data Input.                                                          |       |
| 35      | GND          | Ground.                                                                                   | 1     |
| 36      | Tx1+         | Transmitter Non-Inverted Data Input.                                                      |       |
| 37      | Tx1-         | Transmitter Inverted Data Input.                                                          |       |
| 38      | GND          | Ground.                                                                                   | 1     |

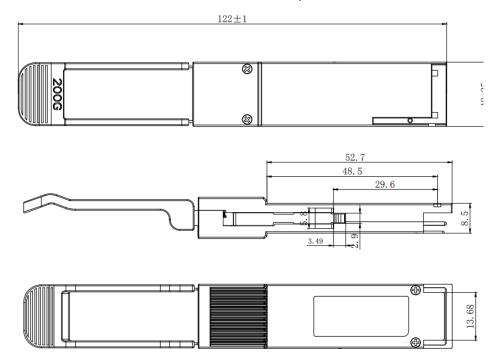
#### Notes:

- 1. GND is the symbol for signal and supply (power) common for the module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1, and VccTx are applied concurrently and may be internally connected within the module in any combination.


## **Block Diagram of Transceiver**



*Transmitter Section:* This module converts 4-channel 53.125Gbps electrical data to 4-channel 850nm 53.125Gbps optical signals for 212Gbps optical transmission.


Receiver Section: Similarly, this module optically converts 4-channel 850nm 53.125Gbps optical signals to 4-channel electrical data output on the receiver side.

## **Recommended Interface Circuit**



# **Mechanical Specifications**

Unit is millimeter. All dimensions are ±0.1mm unless otherwise specified.



#### **About AddOn Networks**

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.













## **U.S. Headquarters**

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

### **Europe Headquarters**

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070