•addon

Q28-100GP4-BXD3129-20-C-AO

Cisco[®] Compatible TAA 100GBase-BX LR1 PAM4 QSFP28 Transceiver Single Lambda (SMF, 1311nmTx/1291nmRx, 20km, LC, DOM)

Features

- Compliant with QSFP28 MSA
- Supports 100Gbps
- Compliant with SFF-8636 Rev 2.10a
- 4x25G Electrical Interface Compliant with OIF CEI-28G-VSR
- Bidi LC Connectors
- Single 3.3V Power Supply
- Commercial Temperature 0 to 70 Celsius
- Single-mode Fiber
- RoHS Compliant and Lead Free

Applications

- Datacenter
- 100GBase Ethernet

Product Description

This Cisco[®] QSFP28 transceiver provides 100GBase-BX LR1 throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1311nmTx/1291nmRx via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 052623

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Supply Voltage	Vcc	-0.5		3.6	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	°C
Operating Relative Humidity	RH	5		85	%
Damage Threshold	Rxdmg	7.6			dBm
Power Dissipation	P _{DISS}			4.5	W

Notes:

- 1. Exceeding any one of these values may damage the device permanently.
- 2. Power Supply Specifications, Instantaneous, Sustained, and Steady State Current are compliant with QSFP28 MSA Power Classification.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Transmitter								
Differential Data Input Swing Per Lane		900			mVp-p			
Differential Input Impedance	ZIN	90	100	110	Ω			
DC Common-Mode Voltage (Vcm)		-350		2850	mV			
Receiver								
Differential Output Amplitude				900	mVp-p			
Differential Output Impedance	ZOUT	90	100	110	Ω			
Output Rise/Fall Time	Tr/Tf	12			ps	20-80%		
Eye Width		0.57			UI			
Eye Height Differential		228			mV	@TP4, 1E ⁻¹⁵		
DC Common-Mode Voltage (Vcm)		-350		2850	mV	1		

Notes:

1. Vcm is generated by the host. Specification includes effects of ground offset voltage.

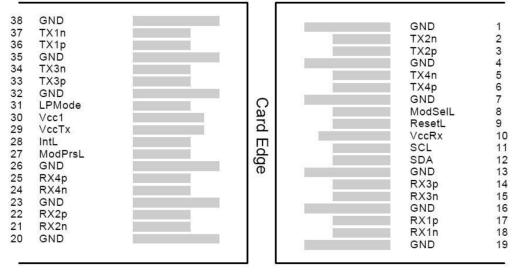
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Signaling Speed			53.125		GBd	
Modulation Format			PAM4			
Center Wavelength	λC	1304.5	1311	1317.5	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Extinction Ratio	ER	3.5			dB	
Transmit OMA for TDECQ<1.4dB	TxOMA	2.8		6.8	dBm	
Transmit OMA for 1.4dB <tdecq<tdecq (Maximum)</tdecq<tdecq 	TxOMA	1.4+TDECQ		6.8	dBm	
Transmit Average Power	TxAVG	-0.2		6.6	dBm	1
Transmitter and Dispersion Eye Closure	TDECQ			3.6	dB	
Optical Return Loss Tolerance				15.6	dB	2
Receiver						
Signaling Speed			53.125		GBd	
Center Wavelength	λC	1284.5	1291	1297.5	nm	
Damage Threshold		7.6			dBm	
Receive Power (OMA _{outer})	RxOMA			6.8	dBm	
Average Receive Power	RxAVG	-10		6.6	dBm	
Receiver Sensitivity (OMA _{outer})	SenOMA			MAX (-7.6, SECQ-9)	dBm	3
Receiver Reflectance				-26	dB	
LOS Assert	LOSA	-15			dBm	
LOS De-Assert	LOSD			-12	dBm	
LOS Hysteresis		0.5			dB	

Notes:

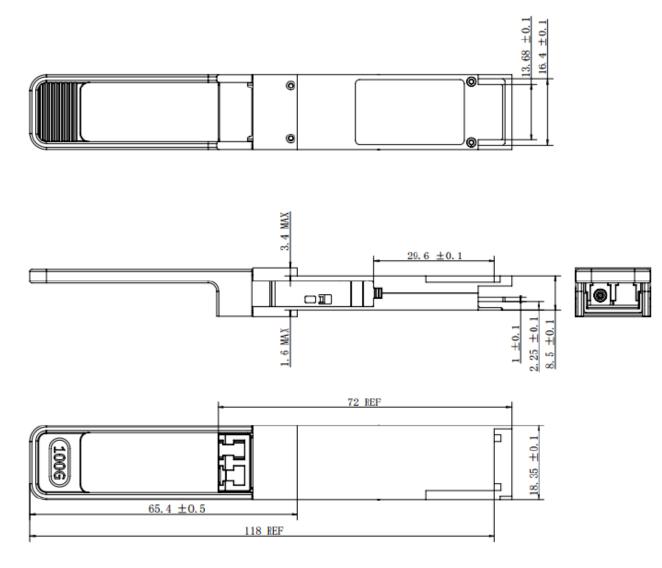
- 1. Average launch power (minimum) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Sensitivity is specified at 2.4×10^{-4} BER.

Pin Descriptions


Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Output.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Module Ground.	1
8	LVTLL-I	ModSelL	Module Select.	
9	LVTLL-I	ResetL	Module Reset.	
10		VccRx	+3.3V Receiver Power Supply.	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
13		GND	Module Ground.	1
14	CML-0	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-0	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-0	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-0	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1
21	CML-0	Rx2-	Receiver Inverted Data Output.	
22	CML-0	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-0	Rx4-	Receiver Inverted Data Output.	1
25	CML-0	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27	LVTTL-0	ModPrsL	Module Present.	
28	LVTTL-O	IntL/RxLOSL	Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636).	
29		VccTx	+3.3V Transmitter Power Supply.	2
30		Vcc1	+3.3V Power Supply.	2
31	LVTTL-I	LPMode/TxDis	Low-Power Mode. Optionally configurable as TxDis via the management interface (SFF-8636).	
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	

35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1

Notes:


- 1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1, and VccTx are the receiver and transmitter power supplies and shall be applied concurrently. VccRx, Vcc1, and VccTx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins areeach rated for a maximum current of 1000mA.

Electrical Pin-Out Details

Top Side Viewed from Top Bottom Side Viewed from Bottom

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070