

MA-QSFP-40G-SR-BD-AO

Cisco Meraki® MA-QSFP-40G-SR-BD Compatible TAA Compliant 40GBase-SR QSFP+ Transceiver (MMF, 832nm to 918nm, 150m, LC)

Features

- SFF-8436 Compliance
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Multi-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications

- 40GBase Ethernet
- Access and Enterprise

Product Description

This Cisco Meraki® MA-QSFP-40G-SR-BD compatible QSFP+ transceiver provides 40GBase-BX throughput up to 150m over multi-mode fiber (MMF) using a wavelength of 832nm to 918nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco Meraki® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Ts	-40		85	°C
Supply Voltage	VccT,R	-0.5		4	V
Relative Humidity	RH	0		85	%

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Case operating Temperature	Тс	0		70	°C
Supply Voltage	Vcct,R	+3.13	3.3	3.47	V
Supply Current	Icc			1000	mA
Power Dissipation	PD			3.5	W

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate per Channel			10.3125	11.2	Gbps	
Power Consumption			2.5	3.5	w	
Supply Current	ICC		0.75	1.0	А	
Control I/O Voltage-High	VIH	2.0		Vcc	V	
Control I/O Voltage-Low	VIL	0		0.7	V	
Inter-Channel Skew	TSK			150	Ps	
RESETL Duration			10		Us	
RESETL De-assert time				100	ms	
Power On Time				100	ms	
Transmitter						
Single Ended Output Voltage Tolerance		0.3		4	V	1
Common mode Voltage Tolerance		15			mV	
Transmit Input Diff Voltage	VI	120		1200	mV	
Transmit Input Diff Impedance	ZIN	80	100	120		
Data Dependent Input Jitter	DDJ			0.1	UI	
Data Input Total Jitter	TJ			0.28	UI	
Receiver						
Single Ended Output Voltage Tolerance		0.3		4	V	1
Rx Output Diff Voltage	Vo		600	800	mV	
Rx Output Rise and Fall Voltage	Tr/Tf			35	ps	1
Total Jitter	TJ			0.7	UI	
Deterministic Jitter	DJ			0.42	UI	

Notes:

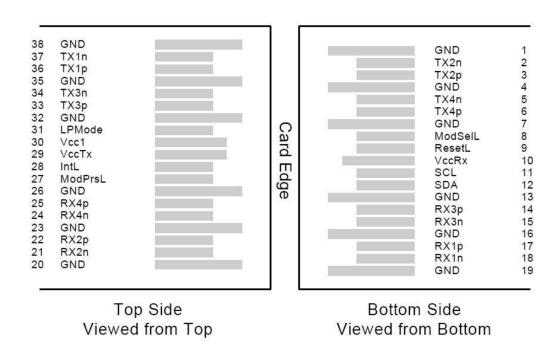
1. 20~80%

Optical Characteristics

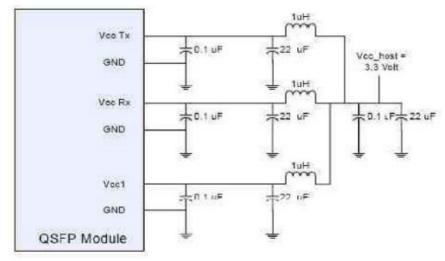
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Transmitter								
Optical Wavelength CH1	λ	832	850	868	nm			
Optical Wavelength CH2	λ	882	900	918	nm			
RMS Spectral Width	Pm		0.5	0.65	nm			
Average Optical Power per Channel	Pavg	-4	-2.5	5.0	dBm			
Laser Off Power Per Channel	Poff			-30	dBm			
Optical Extinction Ratio	ER	3.5			dB			
Relative Intensity Noise	RIN			-128	dB/Hz	1		
Optical Return Loss Tolerance				12	dB			
Receiver								
Optical Center Wavelength CH1	λ	882	900	918	nm			
Optical Center Wavelength CH2	λ	832	850	868	nm			
Receiver Sensitivity per Channel	R		-11		dBm			
Maximum Input Power	Pmax	0.5			dBm			
Receiver Reflectance	Rrx			-12	dB			
LOS De-Assert	LOSD			-14	dBm			
LOS Assert	LOSA	-30			dBm			
LOS Hysteresis	LOSH	0.5			dB			

Notes:

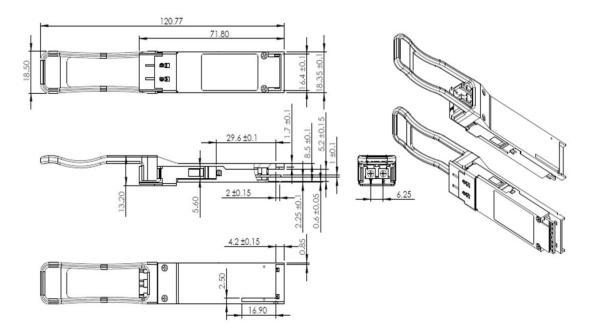
1. 12dB Reflection


Pin Descriptions

Pin	Logic	Symbol	Name/Descriptions	Ref.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	LVCMOS-I	SCL	2-wire Serial interface clock	2
12	LVCMOS-I/O	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted data output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	
28	LVTTL-0	IntL	Interrupt output should be pulled up on host board	2
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Module Ground	1
33	CML-I	Tx3+	Transmitter non-inverted data input	
34	CML-I	Tx3-	Transmitter inverted data input	
35		GND	Module Ground	1
36	CML-I	Tx1+	Transmitter non-inverted data input	
37	CML-I	Tx1-	Transmitter inverted data input	
38		GND	Module Ground	1


Notes:

- 1. Module circuit ground is isolated from module chassis ground with in the module.
- 2. Open collector; should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15V and 3.6V.


Electrical Pin-out Details

Recommended Circuit Schematic

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070