Legal notices

The information contained herein is subject to change without notice.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Trademarks

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
Table of contents

1 Introduction .. 1
 Welcome to your cutter .. 2
 Cutter models .. 2
 Documentation .. 2
 Safety precautions ... 3
 Main cutter components ... 6
 Turn the cutter on and off .. 8
 Connect the cutter to a computer ... 8
 Front panel ... 10

2 Useful links .. 11
 When you need help .. 11

3 Load the substrate .. 13
 Position the pinch rollers .. 17
 Calibrate the substrate ... 19
 Adjust cutting parameters .. 20
 Perform length calibration ... 21
 Change the user .. 22

4 Cut the substrate .. 24
 Introduction ... 24
 HP barcode .. 24
 Job types .. 25
 Calibrations ... 26
 Change the origin ... 26
 Extended load ... 26
 Cut types .. 27
 Detailed OPOS operations ... 28
 Automate tasks with the HP barcode .. 31

5 Detailed operation of the cutter ... 35
 Introduction ... 35
 Main menu .. 37
6 Maintenance .. 46
Clean cutter surfaces .. 46
Clean the drive system .. 46
Clean the substrate sensor .. 47
Clean the Y-guide rail ... 47
Replace the knife ... 48
Change the fuse .. 50
Update the firmware ... 51

7 Troubleshooting ... 52
Cutting quality is not satisfactory .. 52
Substrate is drifting and you have tracking issues .. 52
Substrate jams ... 52
Cutter cannot detect HP barcode or registration marks ... 53

8 Accessories ... 54
Order accessories ... 54
Set the tool type ... 55

9 Specifications .. 56
Cutter dimensions ... 56
Shipping dimensions ... 56
Substrate dimensions ... 56
Performance ... 57
Firmware .. 57
Environment ... 58
Electrical .. 58

Index ... 59
1 Introduction

- Welcome to your cutter
- Cutter models
- Documentation
- Safety precautions
- Main cutter components
- Turn the cutter on and off
- Connect the cutter to a computer
- Front panel
Welcome to your cutter

Your cutter is a drag-knife contour cutter designed to cut flexible substrates accurately. Some major features of the cutter are shown below:

- Optical Positioning System (OPOS X) and HP Barcode System for precise and unattended cutting
- Different cutting modes, with the ability to cut completely through some substrates
- Compatible with blade, pen, and pounce tools
- High-speed cutting head, for reliable and effortless vinyl cutting
- Intuitive control panel to modify settings easily
- Intelligent substrate system to keep substrates on track, even when cutting at top speed
- Ethernet (LAN) connectivity
- Substrate basket included

To send print jobs to your printer, you will need Raster Image Processor (RIP) software, which should be run on a separate computer. RIP software is available from various different companies. Included in the box is a license for the HP FlexiPrint and Cut RIP, supporting Print and Cut and Direct Cut workflows.

Cutter models

<table>
<thead>
<tr>
<th>HP Latex 54 Cutter and HP Latex 64 Cutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplied with the cutter</td>
</tr>
<tr>
<td>HP standard blades (2)</td>
</tr>
<tr>
<td>HP cut-off knife</td>
</tr>
<tr>
<td>HP 3-in substrate flanges</td>
</tr>
<tr>
<td>HP FlexiPrint and Cut RIP license</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP Latex Cutter Extended Kit</td>
</tr>
<tr>
<td>HP Latex 2-in Media Holder Kit</td>
</tr>
<tr>
<td>HP Latex Standard Blade Kit</td>
</tr>
<tr>
<td>HP Latex Specialty Blade Kit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consumables</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP Latex Standard Blade Kit</td>
</tr>
</tbody>
</table>

Documentation

- Introductory information
- Site preparation guide
- Assembly instructions
- User guide
- Legal information
- Limited warranty
The Quick Response (QR) code images found in some parts of this user guide provide links to additional video explanations of particular topics.

Safety precautions

Before using your cutter, read the following safety precautions to make sure you use the equipment safely.

You are expected to have the appropriate technical training and experience necessary to be aware of hazards to which you may be exposed in performing a task, and take appropriate measures to minimize the risks to yourself and to other people.

This equipment is not suitable for use in locations where children are likely to be present.

General safety guidelines

- There are no operator-serviceable parts inside the cutter except those covered by HP's Customer Self Repair program (see http://www.hp.com/go/selfrepair/). Refer servicing of other parts to qualified service personnel.
- Turn off the cutter and call your service representative in any of the following cases:
 - The power cord or plug is damaged.
 - The cutter has been damaged by an impact.
 - There is any mechanical or enclosure damage.
 - Liquid has entered the cutter.
 - There is smoke or an unusual smell coming from the cutter.
 - The cutter has been dropped.
 - The cutter is not operating normally.
- Turn off the cutter in either of the following cases:
 - During a thunderstorm
 - During a power failure
- Take special care with zones marked with warning labels.
- Ventilation measures for your location, whether office, copy room, or printer room, should meet local environmental health and safety (EHS) guidelines and regulations.

Electrical shock hazard

WARNING! The internal circuits of the built-in power supplies operate at hazardous voltages capable of causing death or serious personal injury.

The cutter uses one power cord. Unplug the power cord before servicing the cutter.

To avoid the risk of electric shock:

- The cutter must be connected to earthed mains outlets only.
- Do not remove or open any other closed system covers or plugs.
- Do not insert objects through slots in the cutter.
- Take care not trip over the cables when walking behind the cutter.
Insert the power cord securely and completely into the wall socket and cutter inlet.

Never handle the power cord with wet hands.

Fire hazard

To avoid the risk of fire, take the following precautions.

- The customer is responsible for meeting the cutter's requirements and the Electrical Code requirements according to the local jurisdiction of the country where the equipment is installed. Use the power supply voltage specified on the nameplate.

- Connect the power cords to a line protected by a branch circuit breaker according to the information detailed in the site preparation guide. Do not use a power strip (relocatable power tap) to connect the power cord.

- Use only the power cord supplied by HP with the cutter. Do not use a damaged power cord. Do not use the power cord with other products.

- Do not insert objects through slots in the cutter.

- Take care not to spill liquid on the cutter. After cleaning, make sure all components are dry before using the cutter again.

- Do not use aerosol products that contain flammable gases inside or around the cutter. Do not operate the cutter in an explosive atmosphere.

- Do not block or cover the openings of the cutter.

Mechanical hazard

The cutter has moving parts that could cause injury. To avoid personal injury, take the following precautions when working close to the cutter.

- Keep your clothing and all parts of your body away from the cutter's moving parts.

- Avoid wearing necklaces, bracelets, and other hanging objects.

- If your hair is long, try to secure it so that it will not fall into the cutter.

- Take care that sleeves or gloves do not get caught in the cutter's moving parts.

- Do not touch gears or moving rolls during printing.

- Do not operate the cutter with covers bypassed.

Light radiation hazard

Light radiation is emitted from the LED status indicators and front panel. This illumination is in compliance with the requirements of the exempt group of IEC 62471:2006, *Photobiological safety of lamps and lamp systems*. However, you are recommended not to look directly at the LEDs while they are on. Do not modify the module.

Heavy substrate hazard

Special care must be taken to avoid personal injury when handling heavy substrates.

- Handling heavy substrate rolls may require more than one person. Care must be taken to avoid back strain and/or injury.

- Consider using a forklift, pallet truck, or other handling equipment.

- When handling heavy substrate rolls, wear personal protective equipment including boots and gloves.
Warnings and cautions

The following symbols are used in this manual to ensure the proper use of the cutter and to prevent the cutter from being damaged. Follow the instructions marked with these symbols.

⚠️ **WARNING!** Failure to follow the guidelines marked with this symbol could result in serious personal injury or death.

⚠️ **CAUTION:** Failure to follow the guidelines marked with this symbol could result in minor personal injury or damage to the cutter.

Warning labels

<table>
<thead>
<tr>
<th>Label</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazardous moving part. Keep your fingers and other body parts away from this area. This label is located on the scan axis.</td>
</tr>
<tr>
<td></td>
<td>Fuse caution label. For continued protection against risk of fire, replace the fuse only with one of the same rating. Double pole/Neutral fusing. This label is located near the power inlet, at the rear.</td>
</tr>
<tr>
<td></td>
<td>Caution: Always leave the pinch rollers in the upper positions when the cutter is not in use. This label is located on the side of the scan axis.</td>
</tr>
</tbody>
</table>

NOTE: The final label position and size may vary slightly, but should always be visible and close to the potential risk area.
Main cutter components

The following views of the cutter illustrate its main components.

Front view

1. Pinch roller (one of four)
2. Front panel
3. Pinch roller lever
4. Substrate drive sleeves (the number of sleeves depends on the model)
5. Tool carriage and OPOS sensor
6. Cutting strip
7. Substrate sensor
8. Screws to secure the cutter base
9. Substrate basket
1. Pinch rollers
2. Pinch roller lever
3. Fuse box
4. Power on/off switch
5. AC power socket
6. USB port
7. LAN port
8. Screws to secure the cutter base
9. Casters
10. Substrate basket
11. Roll guide bushes
Turn the cutter on and off

The power switch is located on the cutter’s rear panel.

⚠️ CAUTION: Before connecting the power cord, ensure that the power switch is turned off (to the position marked ‘O’).

To turn on the printer, turn the power switch to the position marked ‘I’.

When the cutter is turned on, the touchscreen activates and the cutter initializes itself. If substrate is loaded, the cutter checks its size.

Connect the cutter to a computer

The cutter has bidirectional USB and LAN ports for connection to a computer. If both ports are connected, the port that receives data first remains active, and the other port is deactivated.

LAN connection (recommended)

👉 IMPORTANT: Use the LAN cable provided: HP cannot guarantee good communication with other cables.

Connect the LAN cable at the back of the cutter and connect the other end to the network.

By default, the cutter has DHCP activated, so the server automatically assigns an IP address to the cutter. To check the IP address, press ➔, then System Setup > Configuration > IP Config > DHCP or Static. If you select Static, you must enter an IP address and network mask.

USB connection

The USB cable should be no longer than 5 m (16 ft).

Procedure for Microsoft Windows

1. Turn off the cutter.
2. Ensure that you have administrative rights on the computer, and that User Account Control is deactivated or set to its lowest level.
3. Insert the CD that came with your cutter into the computer’s CD drive.
4. Run Windows_autostart.
5. Choose your preferred language.
6. Click Install USB driver, and wait for the driver to install.

👉 NOTE: If your computer is connected to the Internet, the latest version of the driver is automatically installed. Otherwise, the driver software on the CD is installed, which may not be the latest version.

7. Connect one end of the USB cable to a USB port on the computer. This end of the cable should have a 4-pin USB series A connector.
8. Connect the other end of the cable to the USB port at the back of the cutter. This end of the cable should have a 4-pin USB series B connector.
9. Turn on the cutter (see Turn the cutter on and off on page 8) and return to the computer.
10. The Found New Hardware Wizard should appear on the computer screen and install the USB driver. Click OK and follow the instructions from the Wizard.
11. When the installation is complete, restart the computer.
To connect more than one cutter to the same computer, see **USB class on page 44**.

Procedure for Apple Mac OS X

1. Turn off the cutter.
2. Connect one end of the USB cable to a USB port on the computer. This end of the cable should have a 4-pin USB series A connector.
3. Connect the other end of the cable to the USB port at the back of the cutter. This end of the cable should have a 4-pin USB series B connector.
4. Turn on the cutter (see **Turn the cutter on and off on page 8**).

Most cutting software for Mac OS X can control the cutter without the installation of a driver.
Front panel

The front panel features eight command keys and a display area capable of displaying one line of text, which is used to display menu options and status information.

A parameter or parameter value preceded by an asterisk (*) is the currently selected parameter or parameter value. If you see a value displayed without an asterisk, it is not the saved value.

The various menu and submenu items are always presented in a loop, which means that, when the last menu or submenu item is displayed, pressing the appropriate key will automatically take you back to the first item of the same menu or submenu.

⚠️ **WARNING!** Whenever you press a key, it may initiate an internal test or movement of the head or substrate. Keep fingers and other body parts away from the cutting area, where there are hazardous moving parts.

Keys

- Press ▼ to reach the most common menu items quickly.
- Press ▼ to read the HP barcode.
- The use of the arrow keys ▲, ▼, ▶, and ◀ depends on the context and what appears on the screen.
- Press x to cancel the current process.
- Press ▻ to confirm a selection or a changed value, or to start or pause a job.
Useful links

Visit the HP Latex Knowledge Center at http://www.hp.com/communities/HPLatex, where you can find detailed information about our HP Latex products and applications, and use the forum to discuss anything related to the business.

Product documentation: http://www.hp.com/go/latex300/manuals/.

User training (quick guide) is already installed in your computer. To reinstall: http://www.hp.com/go/latex300/quickguide/.

Videos about how to use the cutter: http://www.hp.com/supportvideos/ or http://www.youtube.com/HPSupportAdvanced.

For more complete training programme, see http://www.hp.com/go/latex300printandcut/training.

Information about software RIPs, applications, solutions, inks, and substrates: http://www.hp.com/go/latex300/solutions/.

HP Support: http://www.hp.com/go/latex300/support/.

Registration and communication with HP: http://www.hp.com/communities/HPLatex/.

The Quick Response (QR) code images found in some parts of this guide provide links to additional video explanations of particular topics.

When you need help

In most countries, support is provided by HP support partners (usually the company that sold you the product). If this is not the case in your country, contact HP Support on the Web as shown above.

Help is also available to you by telephone. What to do before you call:

- Review the relevant parts of this guide.
- Review your software documentation, if relevant.
- Please have the following information available:
 - The product you are using: the product number and serial number.

 NOTE: These numbers are on a label at the rear of the cutter.

 - If there is an error code on the front panel, note it down.
 - The RIP you are using, and its version number.
 - If relevant, the substrate you are using.
Telephone number

Customer Self Repair

HP's Customer Self Repair program offers our customers the fastest service under either warranty or contract. It enables HP to ship replacement parts directly to you (the end user) so that you can replace them. Using this program, you can replace parts at your own convenience.

Convenient, easy to use

- An HP Support Specialist will diagnose and assess whether a replacement part is required to address a defective hardware component.
- Replacement parts are express-shipped; most in-stock parts are shipped the very same day you contact HP.
- Available for most HP products currently under warranty or contract.
- Available in most countries.

For more information about Customer Self Repair, see http://www.hp.com/go/selfrepair/.
3 Load the substrate

IMPORTANT: You are strongly recommended to load the substrate before preparing the job on the computer.

The loading process is the same, whether the job is a print-and-cut job or just a cut job.

You can load both rolls and sheets of substrate into the cutter. Sheets can be loaded from the front or the rear; rolls must be loaded from the rear.

Load a roll

1. Raise the pinch rollers with the pinch-roller lever arm, which is located at the right-hand side of the cutter, next to the front panel.
2. Loosen the knobs on the two substrate flanges. The following illustration shows a loosened flange (1) and a tightened flange (2).

3. Insert a loosened flange into one end of the substrate roll and tighten the knob. Verify that the flange is secure. Then do the same at the other side of the roll.

4. Place the flange-equipped roll on the substrate supply rollers. Set the flanges inside the groove of the flange guide. The flange guides can be moved laterally on the roller.

 If the flanges are not used (this is not recommended, because then tracking is not guaranteed), then make sure that the roll is situated between the two flange guides.

5. Start feeding the substrate in from the rear of the machine. Pass the substrate underneath the pinch rollers towards the front of the cutter.

6. Position the left substrate edge on the leftmost drive sleeve and check that the right substrate edge is positioned over the long drive sleeve.
7. Position the pinch rollers over the drive sleeves about 3 to 15 mm (0.1 to 0.6 in) away from the substrate's outer edges (1). Then pull the substrate while holding the flange at the back, so that the substrate is tight.

If this procedure does not work, because the substrate is too narrow to reach the long drive sleeve, position the left substrate edge over the second left drive sleeve and position the right substrate edge somewhere over the long drive sleeve. Continue moving the left pinch roller towards the long drive sleeve until both pinch rollers are in their designated position and directly over the edges of the vinyl.

In all cases, both edges of the substrate must cover a drive sleeve. If this is not the case, reposition the roll to cover the drive sleeve.

8. Make sure the substrate follows a straight path from the roll. If necessary, slide the roll and flange guides from left to right along the substrate support rollers.

WARNING! Keep fingers and other body parts away from the cutting area, where there are hazardous moving parts.

9. Lower the pinch-roller lever to press the substrate firmly against the drive sleeves. After one second the tool carriage automatically moves from right to left to measure the usable substrate width.

NOTE: You are not recommended to unroll the substrate manually from the roll. The cutter will unroll the substrate automatically as needed.

Load a sheet

1. Place the sheet in front of the cutter, and make sure that it is correctly aligned.
2. Raise the pinch rollers with the pinch-roller lever arm, which is located at the right-hand side of the cutter, next to the front panel.

3. Start feeding the substrate in from the rear of the machine. Pass the substrate underneath the pinch rollers towards the front of the cutter.

4. Position the left substrate edge on the leftmost drive sleeve and check that the right substrate edge is positioned over the long drive sleeve.

5. Position the pinch rollers over the drive sleeves about 3 to 15 mm (0.1 to 0.6 in) away from the substrate's outer edges (1).

6. Lower the pinch-roller lever to press the substrate firmly against the drive sleeves. After one second the tool carriage automatically moves from right to left to measure the usable substrate width.

NOTE: You are not recommended to unroll the substrate manually from the roll. The cutter will unroll the substrate automatically as needed.

While the cutter is activated, it will automatically start executing a minimal loading procedure as soon as the pinch rollers are lowered. The load procedure will also start if the cutter is switched on while substrate is already in the cutter and the pinch rollers are in the down position (this is not recommended). Always keep the pinch rollers in the up position while the cutter is not being used.
The cutter's minimal loading procedure consists of the following actions, for every kind of job:

- It measures the width of the substrate.
- It unwinds the substrate for a length equal to the width between the two pinch rollers.
- It makes a simultaneous 45° axial move of the drive drum (sleeves) and cutting head.

The cutter is now ready to receive jobs from the computer.

When receiving a job from the computer, the cutter automatically pulls the required substrate from the roll. It does this in steps, and the length of the vinyl used is equal to a number of times the measured width of the substrate.

This load procedure is sufficient in most cases. However, there are some extra load features available.

NOTE: Tracking of longer signs can be guaranteed only when the full load procedure is performed.

Position the pinch rollers

Proper movement of the substrate will occur only if the substrate is driven by the two outer pinch rollers, which are correctly located over two drive sleeves.

The pinch rollers are lowered or raised simultaneously by means of the pinch roller lever arm, located on the right-hand side of the cutter. The pinch rollers must be lifted to allow vinyl loading, during which the substrate is fed from the rear of the cutter to the front. When raised, the pinch rollers can be moved manually to the left or the right along the pinch roller shaft.

CAUTION: Always make sure that the pinch rollers are fully raised before sliding them to the left or right.

CAUTION: Always hold the assembly at the side of the pinch roller to move it from left to right. Do not reposition the pinch roller by holding the assembly at the rear of the machine.

The pinch rollers must be positioned correctly and lowered onto the substrate before an automatic load sequence is initiated. Make sure all the pinch rollers are positioned above a drive sleeve. The outer left pinch roller should be positioned in one of the detents (click positions), situated under a white triangular label. The outer right pinch roller should be positioned somewhere over the long drive sleeve. Click positions are located at the edges of the sleeve (area marked with a white triangular label).
CAUTION: Always leave the pinch rollers in the up position when the cutter is not in use. Leaving the pinch rollers in the down position for a long time will create a flat spot on the pinch rollers, which will seriously degrade tracking performance and cutting quality.

NOTE: When the pinch rollers are raised during a job, the cutter will immediately stop and move the carriage to the right side.
Calibrate the substrate

Substrate calibration ensures that the sensor is able to recognize the HP barcode and the markers. OPOS is calibrated at the factory to work on a wide range of substrates. However, certain substrates—such as those with a high gloss, or translucents—may not work with the default settings. Before working with such materials, perform a substrate calibration test. This test alters OPOS’s sensitivity so that it can read the markers with greater reliability.

Print a square measuring at least 4 × 4 cm (1.6 in) on the substrate that will be used. Be sure to use the same ink that will be used when creating the registration markers.

IMPORTANT: In most cases, substrate calibration is not recommended for OPOS. If you perform the calibration and results do not improve, reset the substrate calibration value to its default setting of 30 (see below).

1. Turn on the cutter and load the vinyl with the printed square.
2. Press.
4. Press or until Calibrations appears on the screen, then press ↓ to confirm.
5. Press or to scroll through the menu until you reach Cal media. Press ↓. Measure appears on the screen.

The cutter allows you to choose whether to measure the substrate or fill in a previously recorded value. Press ↓ when finished.

NOTE: If a combination of substrate color and marker color has already been calibrated and recorded, press and then ↓. Now use ← and → to enter this value directly, without having to measure it again. Press ↓ to confirm.

6. Press ↓ again. The cutter lowers the sensor. Put the sensor on the white area appears on the screen.
7. Use ↑, ↓, ←, and → to maneuver the knife on top of a white area, which should be at least 3 × 3 cm (1.2 × 1.2 in).
8. Press ↓ to confirm.
9. Use ↑, ↓, ←, and → to maneuver the knife on top of a black area, approximately in the middle and slightly to the bottom right.
10. Press ↓ to confirm. The cutter makes a circular movement while it measures the reflection of the marker color. It briefly displays the measured values and then shows a value that is characteristic for this substrate color and marker color combination. Store this value for future reference.

NOTE: An error message may appear if the sensor cannot differentiate between black and white. Make sure the test has been performed correctly. If OPOS cannot sense the markers, one of the manual alignment methods must be used.
Adjust cutting parameters

Some parameters should be reset whenever a new substrate is loaded.

Set knife depth and pressure

1. Ensure that substrate is loaded in the cutter.

 ▶️ **WARNING!** Each icon below can initiate an internal test or movement of the head or substrate. Keep fingers and other body parts away from the cutting area, where there are hazardous moving parts.

2. Press \[\]

4. Press \[\] or \[\] to change the knife pressure. The value changes.
 - Press \[\] then \[\] to perform the internal pressure test.
 - Press \[\] to confirm the chosen pressure.
 - Press \[\] to leave the pressure unchanged.

When you press \[\], the current knife pressure is set to the new value and the cutter cuts the knife pressure test pattern.

![Test Pattern](image)

Peel out the rectangle and inspect the substrate backing.

The knife depth is set correctly when the test pattern cuts completely through the vinyl, the vinyl is removed and the blade tip visibly scratched the front side of the substrate backing. The blade should never cut through the backing; just slightly scratch the silicon coating and first few fibers of the backing material.

Because the knife pressure setting depends on the thickness and type of substrate to be cut, adjusting the knife pressure will require some practice. In general, the knife depth must be increased when using thicker types of vinyl and decreased when using thinner types of vinyl.

5. Press \[\] twice to leave the knife pressure menu.

After setting the cutting depth and/or the knife pressure, perform a thorough visual check of the knife blade protruding from the knife holder, and test the cutting results on a scrap of vinyl substrate.

CAUTION: Do not operate the cutter if the knife blade cuts through the substrate backing, as this will seriously damage the cutter's rubber cutting strip and the knife.
CAUTION: For most vinyl cutting operations, the knife blade tip should be barely visible at the bottom of the knife tool. If the knife blade tip is clearly visible, the cutting depth should be readjusted.

To prevent damage to the cutter, check the depth of the knife blade tip and the quality of the cut each time you load a different type of vinyl into the cutter.

Set the cutting speed

The speed at which the tool moves is determined by four different parameters: speed and acceleration while the tool is down; speed and acceleration while the tool is up. These four parameters have been represented by just one parameter so that you can change the speed quickly and easily.

This parameter is called velocity; it is the speed of the cutter when the tool is down. If the velocity is raised or lowered, the other parameters are also raised or lowered accordingly.

NOTE: The speed at which the cutter pulls the substrate from the roll is fixed at 200 mm/s (8 in/s).

Set the velocity

1. Turn on the cutter.
2. Press
3. Press System setup appears on the screen. Press
4. Press to Settings, then press
5. Press to change the velocity, then press to confirm. An asterisk appears by the velocity, indicating that it is now the selected value.
6. Press twice to leave the menu.

Set the speed parameters separately

1. Turn on the cutter.
2. Press
3. Press System setup appears on the screen. Press
4. Press or to scroll through the menu until you reach Settings.

NOTE: Velocity is the main speed parameter. The default value for the three other parameters is AUTO. This means that they are linked to velocity (which is the speed when the tool is down). The AUTO parameters can be set individually, but will then cease to be linked to the velocity parameter.

Perform length calibration

The cutter has been calibrated in the factory for standard 2-mil cast or 3-mil calendared vinyl. A different calibration factor can be associated with each of the four users. This is particularly helpful for multi-colored signs: it ensures that the parts in different colors match up, even if different types of vinyl are used.

For standard use, it is not necessary to calibrate the cutter. With standard vinyl, the accuracy is within 0.2%. However, if high accuracy between different vinyls or colors is needed, then calibration is necessary.
1. Turn on the cutter, load substrate, and mount the knife.

NOTE: The wider and longer the substrate, the more accurate the calibration will be. Use a piece of vinyl of maximum width and a length that is approximately 1.5 times the width.

2. Press

3. Press
System setup appears on the screen.

4. Press

5. Press or to scroll through the menu until you reach **Calibrations**. Press

6. Press or to scroll through the menu until you reach **Cal. length**. Press

7. Press again. The cutter reloads the substrate and starts the length calibration. Take out the substrate and measure the length of the cut line. The length to be entered is the distance between line 1 and line 2, as shown below.

![Diagram showing lines 1 and 2]

NOTE: The cutter can only be as accurate as the accuracy of the calibration itself. If your measuring device is inaccurate, then re-calibrating may reduce the cutter’s accuracy. For maximum accuracy, you are recommended to set the cutter to **Metric** units of measurement for the calibration.

8. Use , , , and to change the value on the screen to the length that you measured between the two lines along the length of the vinyl roll.

9. Press to confirm.

10. Use , , , and to change the value on the screen to the length that you measured between the two lines across the width of the vinyl roll.

11. Press to confirm.

12. Press twice to leave the menu.

Change the user

There are four user configurations, all of which have the same parameters. The parameters can be set to different values for each user, so that you can reconfigure the cutter for a different type of job or substrate quickly and easily by selecting a different user.

NOTE: Initially, the parameters are set to the same values for all users.

This parameter is called **velocity**, it is the speed of the cutter when the tool is down. If the velocity is raised or lowered, the other parameters are also raised or lowered accordingly.

NOTE: The speed at which the cutter pulls the substrate from the roll is fixed at 200 mm/s (8 in/s).
Change parameter values for a user

1. Turn on the cutter.

2. Press \(\text{Enter} \).

3. Press \(\text{Enter} \) System setup appears on the screen. Press \(\text{Enter} \).

4. Press \(\uparrow \) or \(\downarrow \) to scroll through the menu until you reach Configuration. Press \(\text{Enter} \).

5. Press \(\uparrow \) or \(\downarrow \) to scroll through the menu until you reach User. Press \(\text{Enter} \).

6. Press \(\text{Enter} \) again. The currently selected user name appears on the screen.

7. Press \(\uparrow \) or \(\downarrow \) to change the user.

8. Press \(\text{Enter} \) to confirm. An asterisk appears by the user name, indicating that it is now selected.

9. Press \(\text{Enter} \) twice to leave the menu.

NOTE: Velocity is the main speed parameter. The default value for the three other parameters is AUTO. This means that they are linked to velocity (which is the speed when the tool is down). The AUTO parameters can be set individually, but will then cease to be linked to the velocity parameter.
Introduction

Contour cutting is made possible by the highly accurate Optical POSitioning system (OPOS).

The OPOS sensor, which is mounted underneath the tool carriage, detects the various registration marks printed on the substrate. Using these marks, OPOS can determine the exact position of the printed graphic.

NOTE: This registration process works only with cutting jobs prepared using the software provided.

The sensor drops automatically while registering the markers and rises again after completing this task. The improved sensor can read virtually any kind of substrate-marker combination.

HP barcode

The HP barcode is the group of elements printed on the substrate to be cut, that allow the OPOS sensor to identify what cuts should be made and where.

It consists of three items:

- Registration marks: Small squares that help the cutter to locate the job accurately, and to compensate for skew and deformation.
- OPOS XY line: A line in front of the job that helps the cutter to compensate for deformation across the width of the job (bow deformation).
- Blinking line: A code that can be placed on both sides of the job, improving productivity, as you can feed in the substrate starting at either end.

OPOS XY

A function in OPOS exists to compensate for curved printing errors in the Y-axis. This is called OPOS XY. An extra line needs to be printed in order to use the OPOS XY function.
TIP: Add a barcode at both sides of the job to facilitate sheet loading from both sides of the printer.

The line may be added between or above the front Y markers. The distance between the center of the markers and the line (distance 1) should not be more than 20 mm (0.79 in). The left and right margins between line and marker (distance 2) should be 10 mm (0.39 in) for optimal sensing. The line itself should be 1 mm (0.039 in) thick. It is not necessary to have a white area between the extra line and the rest of the design.

When OPOS XY is enabled, the OPOS sensor measures points along the extra line. The number of measuring points is calculated by the cutter and depends on the width of the design.

NOTE: The default setting for OPOS is OPOS. If the OPOS XY functionality is needed, the user must manually change the setting Alignment mode in the OPOS setup to OPOS XY, either on the front panel (see section 4.3.15) or in the cutting software.

NOTE: Some cutting software does not support the OPOS XY feature. If it sends the alignment command ‘OPOS’ to the cutter, it blocks the cutter’s OPOS XY feature. If it is possible to manually define a line in the design so that it meets the specifications above, the blocking of the software can be neutralized by using the setting ‘FORCE OPOS XY’ in the alignment mode.

Job types

There are different kinds of jobs: mainly, print-and-cut jobs and direct-cut jobs; both are prepared at the computer with the software provided.

When you start a direct-cut job, the cutter will start to cut immediately, so make sure you have the substrate loaded before sending it to cut.

Print-and-cut jobs include an HP barcode as part of the print. This is read by the OPOS to find out where the cuts should be made. See Read the HP barcode on page 33.
Calibrations

To ensure that OPOS is working accurately, two calibrations are necessary: the OPOS calibration (see Calibrate the OPOS sensor on page 53) and the substrate calibration (see Calibrate the substrate on page 19). The OPOS calibration is the calibration of the distance between the knife tip and the sensor. The substrate calibration teaches the cutter the reflection levels of the marker color and the substrate color.

NOTE: Although the OPOS sensor has been calibrated in the factory, HP recommends doing a test to determine how well the factory-set parameters work with the materials you are using. If the accuracy is not satisfactory, then do the OPOS calibration.

Change the origin

- Press \[\uparrow \] , \[\downarrow \] , \[\rightarrow \] or \[\leftarrow \] to change the origin.

 The substrate moves to the new origin, and values appear on the screen. The X value is the distance from the original origin; the Y value is the maximum cutting width.

- Press \[\searrow \] to toggle the Y value between the maximum cutting width and distance from the original origin.

- Press \[\swarrow \] to toggle between the maximum cutting length and the distance from the original origin.

 The X and/or Y value toggles.

- Press \[\uparrow \] if you have reached the desired origin.

 The cutter comes online and is ready to receive data from the computer.

- Or press \[\times \] to cancel.

 The cutter moves to its original origin and comes online.

Extended load

The extended load function makes it possible to define the limits of the Y axis so that the cutter can cut outside the pinch rollers. Substrate has to be loaded before this function can be used.

1. Press \[\square \] .

2. Press \[\uparrow \] . System setup appears on the screen. Press \[\rightarrow \] .

3. Press \[\downarrow \] > Actions. Press \[\rightarrow \] .

4. Press \[\uparrow \] or \[\downarrow \] to scroll through the menu until you reach Extended load.

5. Press \[\leftarrow \] or \[\rightarrow \] to define the new limit at the right (origin). The head moves to its new origin.

6. Press \[\rightarrow \] . Size appears on the screen.

7. Press \[\leftarrow \] or \[\rightarrow \] to define the new limit at the left.

8. Press \[\rightarrow \] .
Cut types

The cutter is designed to make two kinds of cut:

- **Kiss cut**: This cuts only the substrate, and not the liner.

- **Cut through** (called FlexCut in the cutter’s front panel): This cuts all the way through the substrate and liner. Small pieces left uncut (bridges) allow the substrate to remain connected together; when the job is finished, the cut pieces can be torn out. Although this can be done with any shape, it is reliable only with simple shapes. See [Cut through on page 29](#).
Detailed OPOS operations

Load the print into the cutter

Load the print into the cutter as usual (see [Load the substrate on page 13](#)). Make sure the marker, indicating the origin, is situated at the bottom right corner of the cutter.

Set the parameters for the OPOS sensor

The OPOS parameters are variables that define the distance, size, and number of markers. Most cutting software sets these parameters automatically and even starts the special load procedure.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-distance</td>
<td>30–1300 mm</td>
</tr>
<tr>
<td>Y-distance</td>
<td>30–1300 mm</td>
</tr>
<tr>
<td>X-size</td>
<td>1.2–10 mm</td>
</tr>
<tr>
<td>Y-size</td>
<td>1.2–10 mm</td>
</tr>
<tr>
<td>Markers per line</td>
<td>2–64</td>
</tr>
</tbody>
</table>

To change the OPOS settings manually

1. Turn on the cutter.
2. Press .
4. Press or to scroll through the menu until you reach Configuration. Press .
5. Press or to scroll through the menu until you reach OPOS parameters. Press .
6. Press or to choose the parameter to be changed or checked. The available parameters are OPOS origin, Sheet mode, and Panels.
7. Press to confirm. The value of the chosen parameter appears on the screen.
8. Press or to change the parameter value.
9. Press to confirm. An asterisk appears by the value, indicating that it is now selected.
10. Press once to choose another parameter, or twice to leave the menu.

Register the markers

Most cutting software will initiate the special load procedure after the parameters are sent. If the software does not do this, initiate the loading sequence from the cutter's front panel.

Register the markers manually

1. Turn on the cutter and load the substrate.
2. Press .

4. Press ↑ or ↓ to scroll through the menu until you reach Actions. Press ▶️.

5. Press ↑ or ↓ to scroll through the menu until you reach Media alignment. Press ▶️. A message prompting you to set the knife above the first marker scrolls across the screen.

6. Use ←, →, ▲, and ▼ to position the knife.

7. Press ▶️. The cutter reload the substrate to check that the loaded length matches the OPOS parameters. Then it reads the markers.

NOTE: If a marker cannot be read, you can reposition the knife and try again, or cancel the operation.

NOTE: If an error occurs or the cutter cannot read the markers after three attempts, the following message is displayed: *Markers could not be sensed, press X to continue.*

Cut through

The cutting-through functionality is focused on cutting simple shapes (such as rectangles). It is mostly used in combination with contour cutting.

An interrupted cutting line (with small bridges) enables the substrate to stay together. When the job is finished, the cut pieces can be torn out.

![Full pressure vs Flex pressure](image)

Set the parameters

1. Turn on the cutter.

2. Press 🎨.

4. Press ↑ or ↓ to scroll through the menu until you reach FlexCut. Press ▶️.
5. Press \[\text{▲} \text{ or } \text{▼} \] to choose the FlexCut parameter. The available parameters include Full pressure, Full length, Full velocity, Half pressure, and Half length.

6. Press \[\text{◄} \text{ or } \text{►} \] to change the value of the chosen parameter.

7. Press \[\text{►} \text{ to confirm. An asterisk appears by the value, indicating that it is now selected.} \]

NOTE: FlexCut does not have to be set to On if the cutting software can distinguish between contour-cut lines and FlexCut lines.

TIP: It is difficult to give recommended settings for FlexCut. Usually the following initial values are used. FlexCut mode: Accurate; Full pressure: 160 g; Full pressure cut-length: 10 mm; Flex pressure: 80 g; Flex pressure cut-length: 0.8 mm.

8. You can press \[\text{▶} \text{ at any time during parameter setting, to check the results. The cutter cuts out a pattern to check whether the settings are usable.} \]

9. Check that the result is satisfactory. If not, change one of the above parameters. Reducing the velocity can improve the result. You are recommended never to use cutting speeds greater than 400 mm/s (16 ips) with cutting pressures above 170 g.

NOTE: It is not always easy to find the correct balance between cutting deep enough (ensuring that the pieces can be taken out easily) and not cutting too deep (ensuring that the substrate keeps its strength while cutting). Sometimes this balance does not exist, meaning that this substrate cannot be cut through with satisfactory results.

NOTE: FlexCut parameters are always metric, regardless of the value of the Units parameter.

TIP: When cutting through, parallel lines are recommended to be at least 1 cm away from each other. Otherwise, while cutting the second line, the first line may come loose and cause trouble.

10. Press \[\text{►} \text{ to confirm.} \]

11. Press \[\text{×} \text{ to leave the FlexCut menu.} \]

12. Press \[\text{▲} \text{ or } \text{▼} \] to scroll through the menu until you reach Panels. Press \[\text{►} \text{.} \]

13. Press \[\text{▲} \text{ or } \text{▼} \] to choose the panel parameter to be changed.

14. Press \[\text{◄} \text{ or } \text{►} \] to change the value of the chosen parameter.

TIP: Recommended settings are: Panels: On; Panel size: 3–10 cm; Recut: Off; Sorting: On.

15. Press \[\text{►} \text{ to confirm. An asterisk appears by the value, indicating that it is now selected.} \]

16. Press \[\text{x} \text{ twice.} \]
Automate tasks with the HP barcode

During normal OPOS jobs you need only set the tool above the first mark to start the job. OPOS allows you to automate certain tasks, thus reducing user intervention and production time. There are several types of automation.

- **Automatic start of the OPOS job**
 This is controlled by the parameter `OPOS origin`. A combination of this parameter setting and/or a special origin setting during loading of the substrate can mean that you don’t need to set the tool above the first mark to start an OPOS job.

- **Multiple copies of the same job**
 When cutting multiple graphics, you need only maneuver the OPOS sensor above the origin mark of the first graphic. You do not need to do this for subsequent graphics.

 There are two situations in which this can be done:
 - When cutting multiple graphics, or multiple copies of a graphic, on the same roll of substrate.
 - When cutting the same graphic on multiple sheets of substrate.

 Most automated tasks are organized from within the cutting software. However, when the same graphic contour needs to be cut out, the automatic tasks may also involve some manual manipulation.

 Before using the automation features, note the amount of your cutter’s RAM. If the cutter’s RAM is greater than the job’s file size, then the automating features can be used. If the cutter’s RAM is less than the job’s file size, the automation features should not be used.

- **Unattended contour cutting (roll to roll)**
 A special barcode can be printed together with the job. This barcode can then be used to access the correct cutting data, so the cutter can cut one job after another without user intervention.

OPOS origin

The parameter `OPOS origin` was created to automate the start of the OPOS procedure. This parameter has four settings. Its usage depends on the chosen OPOS mode. It can be found in the system submenu `OPOS parameters`. If the OPOS mode is `OPOS barcode` or `OPOS sheet`, then `OPOS origin` has no effect. The useful combinations are mentioned in the table below.

<table>
<thead>
<tr>
<th></th>
<th>OPOS X</th>
<th>OPOS XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>Indicate mark</td>
<td>Indicate mark</td>
</tr>
<tr>
<td>XY correction line</td>
<td>–</td>
<td>OPOS XY line</td>
</tr>
</tbody>
</table>
In combination with OPOS X mode

- **OPOS origin is set to ‘Mark’**

 This is the default setting. On receiving an OPOS job from the computer, the cutter prompts you to set the tool above the first mark and press \[\text{II}\]. The cutter then starts searching for the OPOS mark around that position.

- **OPOS origin is set to ‘Current position’**

 On receiving an OPOS job from the computer, the cutter immediately starts looking for the mark when it gets an OPOS job from the computer, without waiting for you to move the tool. Therefore, you have to position the tool above the first mark while loading the substrate.

 If OPOS origin is set to either \textit{XY correction line} or \textit{Center of substrate}, the cutter reacts as though the parameter were set to \textit{Indicate mark}.

In combination with OPOS XY mode

- **OPOS origin is set to ‘Mark’**

 This is the default setting. On receiving an OPOS job from the computer, the cutter prompts you to set the tool above the first mark and press \[\text{II}\]. The cutter then starts searching for the OPOS mark around that position.

- **OPOS origin is set to ‘Indicate line’**

 On receiving an OPOS job from the computer, the cutter prompts you to set the tool under the OPOS XY line and press \[\text{II}\]. The cutter then starts searching for the OPOS XY line by slowly advancing the substrate. Once it has found it, it follows this line to the right until it finds the location of the first mark, and then it starts searching for the first mark.

- **OPOS origin is set to ‘Current position’**

 On receiving an OPOS job from the computer, the cutter immediately starts searching for the OPOS XY line by slowly advancing the substrate. Once it has found it, it follows this line to the right until it finds the location of the first mark, and then it starts searching for the first mark. Therefore, you need to position the origin under the OPOS XY line, immediately after loading the substrate.

 This setting has been created for jobs that are left-aligned and differ a lot in size. The origin/tool can be set to the left of the substrate under the OPOS XY line, so that the origin mark can be found, even if it is situated far away from the right side of the substrate.

- **OPOS origin is set to ‘Center of substrate’**

 On receiving an OPOS job from the computer, the cutter first sets the OPOS sensor in the middle of the substrate. Then it starts searching for the OPOS XY line by slowly advancing the substrate. Once it has found the XY line, it follows it to the right until it finds the location of the first mark, and then it starts searching for the first mark.

 This setting has been created for jobs on a roll where the width of each job is at least half the width of the substrate (this is usually the case, otherwise there would be a lot of wasted substrate). This method is slightly slower than the previous method.
Read the HP barcode

Some RIPs can print a barcode together with the OPOS markers. This barcode can then be used to identify the job and retrieve the cut data automatically from the computer.

The complete procedure is normally started from the computer. The cutting software usually has a button or a command called **Scan a barcode**. First make sure the substrate is loaded.

Using the arrows, place the carriage before the HP barcode.

If there are different jobs on the same sheet or roll, with different justifications, the carriage should be placed as shown below.

You can start the procedure from the computer or from the cutter’s front panel.

To start from the cutter’s front panel:

1. Turn on the cutter.
2. Press []
3. Press [] System setup appears on the screen. Press []
4. Press [] or [] to scroll through the menu until you reach Actions. Press []
5. Press [] or [] to scroll through the menu until you reach Media alignment.
6. Press []. The current align mode appears on the screen.
7. Press [] or [] to change the value to OPOS barcode.
8. Press \[\text{I} \] to confirm. An asterisk appears by the value, indicating that it is now selected.

9. Now load the substrate as described in Register the markers on page 28.

The cutter reads the barcode and sends the barcode data to the computer.
The cutting software then automatically sends the correct cutting data to the cutter.
The cutter starts sensing the OPOS markers, then cuts out the job.
The OPOS sensor now searches for another job after the one that has just finished, and continues to contour-cut.
This is repeated until all contour-cut jobs on the loaded roll are done.
5 Detailed operation of the cutter

Introduction

This chapter contains a detailed list of all parameters that can be changed and tests that can be initiated from the cutter's front panel.

The commonly used front-panel operations have already been described in this guide. This chapter may be used as a reference to locate a particular parameter setting or test, including the less frequently used items.

The menu system consists of the main menu and the four system setup menus.
Chapter 5: Detailed Operation of the Cutter

Menu

<table>
<thead>
<tr>
<th>1</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Confidence Test</td>
</tr>
<tr>
<td>1</td>
<td>Load</td>
</tr>
<tr>
<td>1</td>
<td>Extended Load</td>
</tr>
<tr>
<td>1</td>
<td>Reset</td>
</tr>
<tr>
<td>1</td>
<td>Media Alignment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Velocity</td>
</tr>
<tr>
<td>1</td>
<td>Overcut</td>
</tr>
<tr>
<td>1</td>
<td>Opticut</td>
</tr>
<tr>
<td>1</td>
<td>Turbocut</td>
</tr>
<tr>
<td>1</td>
<td>Panels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cal. Media</td>
</tr>
<tr>
<td>1</td>
<td>Cal. Length</td>
</tr>
<tr>
<td>1</td>
<td>Cal. OPOS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LAN</td>
</tr>
<tr>
<td>1</td>
<td>Language</td>
</tr>
<tr>
<td>1</td>
<td>Menu Units</td>
</tr>
<tr>
<td>1</td>
<td>FW Revision</td>
</tr>
<tr>
<td>1</td>
<td>User</td>
</tr>
<tr>
<td>1</td>
<td>Copy User</td>
</tr>
<tr>
<td>1</td>
<td>OPOS Parameters</td>
</tr>
<tr>
<td>1</td>
<td>Factory Def.</td>
</tr>
<tr>
<td>1</td>
<td>USB Class</td>
</tr>
<tr>
<td>1</td>
<td>Media Sensor</td>
</tr>
<tr>
<td>1</td>
<td>Alignment Mode</td>
</tr>
</tbody>
</table>

M option has related test (test button)
Main menu

Pressure
Pressure is preceded by its tool name. This parameter is explained in Set knife depth and pressure on page 20.

Knife offset
This parameter is explained in Change the drag knife offset on page 49.

Pounce gap
This parameter applies to an optional accessory.

The pouncing gap submenu is used to set or modify the distance between the pounced holes. The default pouncing gap value is 1 mm.

After pressing [↑], press [←] or [→] until the desired pouncing gap is displayed on the screen, then press [↓] to confirm.

The value can be set between 1 mm and 50 mm.

FlexCut
FlexCut can be set to Off, Fast, or Accurate. When the cutter is set to Fast or Accurate, it will alternately cut a certain length with full pressure and a certain length with reduced pressure. The advantage of the FlexCut feature is that it cuts completely through the substrate. Moreover, it also allows the material to stay together by means of the small substrate bridges.

- Fast is the quickest mode, but it is less precise due to the pressure changes during the cutting procedure.
- Accurate is much slower, but much more precise because the cutter stops at every change of pressure.
There are five typical FlexCut parameters:

- **Full pressure**: This parameter determines full pressure, used during FlexCut mode.
- **Full pressure cut length**: This parameter determines the length that is cut with full pressure, usually the length that will be cut all the way through.
- **Flex pressure cut length**: This parameter determines the length that will be cut with reduced pressure or without pressure. This is usually a much smaller value than the full pressure cut length: the length of the substrate bridges.
- **FlexCut pressure**: This parameter determines the pressure of the Flex pressure cut length. This is usually a reduced pressure, so that the knife only scratches the substrate or cuts it only halfway through.
- **FlexCut velocity**: FlexCut uses higher knife pressures. Higher knife pressures need lower cutting speed. With this parameter the velocity of FlexCut can be set independently from the normal cutting velocity.

See [Cut through on page 29](#) for more details.

Tool

How to change tools is explained in [Set the tool type on page 55](#).
System setup

Press \(\text{Play}\) to access the remaining parameters and internal tests.

Actions

<table>
<thead>
<tr>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence Test</td>
</tr>
<tr>
<td>Load</td>
</tr>
<tr>
<td>Extended Load</td>
</tr>
<tr>
<td>Reset</td>
</tr>
<tr>
<td>Media Alignment</td>
</tr>
</tbody>
</table>

Confidence test

The confidence test performs a quick electrical and mechanical test of the cutter to make sure it is fully operational. A sheet of substrate of at least A3/B size should be used for this test. The sheet is always cut on the left side. Press \(\text{Play}\) to start the test.

Load

This menu can be used when loading a substrate sheet. During loading, the maximum substrate length can be set.

Extended load

This parameter is explained in Extended load on page 26.

Reset

The Reset instruction performs a complete reset of the cutter. Press \(\text{Play}\) to execute a reset.

Media alignment

Align load is a special loading procedure to register markers, so that pre-printed jobs can be contour-cut. This parameter is explained in Register the markers on page 28.
Settings

<table>
<thead>
<tr>
<th>2</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Velocity</td>
</tr>
<tr>
<td></td>
<td>Overcut</td>
</tr>
<tr>
<td></td>
<td>Opticuts</td>
</tr>
<tr>
<td></td>
<td>TurboCut</td>
</tr>
<tr>
<td></td>
<td>Panels</td>
</tr>
</tbody>
</table>

Velocity

This menu groups all the parameters that affect the throughput of the cutter. The velocity and acceleration settings are explained in Set the cutting speed on page 21.

Overcut

The Overcut submenu enables you to generate an overcut to facilitate weeding the cut. Each time the knife goes up or down, the cutter cuts a bit further. The illustration below shows what overcut can do with a tangential knife. A sample cutout with a drag knife would show fewer overcuts as there would be fewer up/downs (usually only one per curve/letter). The overcut setting can be disabled (=0) or set to any value between 0 (=off) and 10. One unit is about 0.1 mm (0.004 in).

![Overcut illustration](image)

Press ▶️ Use ◀️ or ▶️ to change the value. Press ▶️ to confirm or ❌ to cancel. The default overcut is set to 1.

OptiCut

OptiCut improves the cutting quality if the knife is worn out or not calibrated correctly.

Press ▶️ Use ◀️ or ▶️ to set OptiCut on or off. Press ▶️ to confirm or ❌ to cancel. OptiCut is off by default.

TurboCut

TurboCut increases throughput by speeding up the drag movement but without raising the overall speed of the cutter. The cutting time reduction is significant, especially when cutting small, detailed designs. However, some thicker materials may not cut well with this feature turned on.

Press the TurboCut button, then use ◀️ or ▶️ to activate or deactivate TurboCut. Press ▶️ to confirm or ❌ to cancel. TurboCut is activated by default.
Panels

There are four parameters in the Panels submenu:

- **Panels**: This parameter switches panels on or off.
- **Panel size**: This parameter determines the length of the panel.
- **Panel replot**: This parameter determines whether the design is to be cut more than once, panel per panel. Panel replot is used for substrates that are thick or difficult to cut. The value of this parameter is disregarded if paneling is set to off. If this parameter is set to 0, the cutter cuts each panel once only. If it is set to 1, the cutter cuts each panel twice.
- **Sort vectors**: See below.

Sort vectors

Sorting vectors is a submenu of the Panels menu, but because of its importance it is explained separately. There are three options in this menu:

- **Off**: When vector sorting is set off, the cutter does no optimizing of the vectors. This is used when the intelligence of the cutter driver is preferred.
- **Directional**: If set to directional, the vectors are optimized for the cutting direction (substrate advance). This is used when the cutting pressure has to be set relatively high (for example during cutting through).
- **Starting point**: This option optimizes the starting point for closed curves. This is used when the users sees that the curves do not close as they should.

Paneling is used for various different applications. Below are the typical settings for the two most common applications.

- **Cutting through**: This is explained in *Cut through on page 29*. Typical settings for the parameters are: **Panels**: On; **Panel size**: 5–10 cm; **Panel replot**: Off; **Vector sorting**: Directional.

- **Tracking difficult substrates**: Typical settings for the parameters are: **Panels**: On; **Panel size**: 3–10 cm; **Panel replot**: On/Off, depending on the thickness of the substrate. **Vector sorting**: Directional/Off, depending on the required knife pressure and the substrate backing.
Calibrations

<table>
<thead>
<tr>
<th>Calibrations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal. Media</td>
<td></td>
</tr>
<tr>
<td>Cal. Length</td>
<td></td>
</tr>
<tr>
<td>Cal. OPOS</td>
<td></td>
</tr>
</tbody>
</table>

Calibrate media

Substrate calibration helps the sensor to recognize the markers. It is explained in Calibrate the substrate on page 19.

Calibrate length

Length calibration allows the length of the cut lines to be adjusted within specifications. For instance, if a cut line should measure 100 mm exactly, the cutter can be adjusted for any discrepancy.

This calibration is explained in Perform length calibration on page 21.

Calibrate OPOS

OPOS calibration calibrates the distance between the OPOS sensor and the knife tip. It is explained in Calibrate the OPOS sensor on page 53.
Configuration

LAN

This option displays the cutter’s LAN settings.

Language

This submenu is used to select the language to be used on the front panel. When the cutter is new, it asks you to choose a language; but you can change it at any time with this option.

The available languages include English, Spanish, French, Dutch, Italian, German, and Polish.

Press \[\text{Gr}\] Use \[\text{LorR}\] to select a language. Press \[\text{Gr}\] to confirm or \[\text{x}\] to cancel. The default language is chosen when the cutter is turned on for the first time.

Menu units

This option determines whether the speed and size values are displayed in the metric system or in the English/US system of measurement.

Press \[\text{Gr}\] Use \[\text{LorR}\] to select the units of measurement. Press \[\text{Gr}\] to confirm or \[\text{x}\] to cancel. The default units are chosen when the cutter is turned on for the first time.

Firmware revision

This option allows you to view the cutter’s firmware version number, which is often helpful to technicians when diagnosing problems over the telephone.

Copy user

This option copies all the settings of user 1 to the other three users.
OPOS parameters

The OPOS settings submenu is used to change the various OPOS parameters from the front panel. It is explained in Set the parameters for the OPOS sensor on page 28.

Extra parameters

- **Sheet mode.**
- **Panels** allows the markers to be read in panels. Using this option, the OPOS sensor reads markers according to panel size, instead of loading them all.

 Panels can be set to **On** or **Off**. When set to **On**, the sensor will load only two markers in the X direction when loading OPOS. Other markers will be read when unrolling substrate.

 The panel size is automatically set to the distance between two markers in the X direction.

- **OPOS origin** is explained in OPOS origin on page 31.

Factory defaults

This option restores all parameters to the values originally set in the factory.

USB class

USB class can be set to **USB port 1**, **Printer uni** (unidirectional), **Printer bidi** (bidirectional), **USB port 2**, **USB port 3**, or **USB port 4**.

Printer uni and **Printer bidi** are for use with printer adaptors with either network or wireless connection.

Because of the different USB ports, the computer can distinguish between up to four cutters attached to it.

Press to change the USB class. Press to confirm or to cancel. The default setting is **USB port 1**.

NOTE: A change in USB class takes effect only after restarting the cutter.

NOTE: The USB class in the cutting software and should match the USB class in the cutter. Each time a new USB class is selected for the cutter and connected for the first time to the computer, Windows starts a wizard to install the driver.

Media sensor

This option turns the substrate sensor **On** or **Off**.

The substrate sensor detects whether substrate is loaded. It also detects the end of the substrate. Use of the sensor can prevent damage to the cutting strip and knife tip.

The cutter stops during the loading procedure or while it is cutting as soon as the rear sensor detects the end of the substrate.

Press to turn the sensor **On** or **Off**. Press to confirm or to cancel. The sensor is **On** by default.

Alignment mode

The OPOS settings are explained in detail in the previous chapter, except for the alignment mode. There are three additional alignment methods available: X alignment, XY alignment, and XY adjustment.
These alignment methods can be used if the combination of marker color and substrate color cannot be read by the OPOS sensor.

They require you to register markers manually, using the cutter’s front panel. Most cutting software can put these markers around the printed graphic automatically.

- **X alignment** compensates for errors in substrate alignment, and therefore graphic rotation, by rotating the graphic’s contour. This alignment method requires you to specify the origin and one point along the X axis. Distance parameters are not required. X alignment is the easiest alignment method.

- **XY alignment** compensates for errors in graphic rotation and skew. Skew errors occur when the graphic’s X and Y axes are not perpendicular. This alignment method requires you to specify the origin and one point along both the X and Y axes.

- **XY adjustment** compensates for errors in graphic rotation, skew, and scale. Scale errors occur when the graphic’s printed size is different from the graphic’s original size, as created in the imaging software. X-distance and Y-distance parameters are required. These parameters define the distance between the origin and X-axis point and between the origin and Y-axis point. XY adjustment is the most accurate manual alignment method.

Press [] when ready. Use [] or [] to change the alignment method. Press [] to confirm or [] to cancel. The default alignment method is OPOS.
6 Maintenance

Clean cutter surfaces

The cutter has a number of sliding surfaces, made of smooth metals and plastics. They are virtually friction-free and require no lubrication. They will, however, collect dust and lint that may affect the cutter’s performance. Keep the cutter as clean as possible by using a dust cover. When necessary, clean the unit with a soft cloth, dampened with isopropyl alcohol or mild detergent. Do not use abrasives.

NOTE: If you are in an area (such as California) that regulates VOC cleaning and maintenance fluids, instead of isopropyl alcohol use a VOC-certified cleaner such as a properly diluted Simple Green All-Purpose Cleaner.

Clean the drive system

Over time, the sleeves of the drive drum may become clogged with accumulated residue from the substrate liner. This may cause the substrate to slip between the pinch rollers and the drive sleeves, resulting in decreasing traction.

1. Make sure there is no substrate loaded in the cutter.
2. Turn off the cutter and disconnect it from the mains. Raise the pinch rollers.
3. Put a pinch roller above the sleeve that needs to be cleaned. Make sure it is the outer left or the outer right pinch roller (otherwise there is not enough pressure).
4. Remove the backing from a piece of vinyl. Place the piece of vinyl between a pinch roller and a drive sleeve with the tacky side down. Lower the pinch roller.
5. Turn another yellow drive sleeve manually, so that the piece of vinyl is winding on the sleeve for at least one turn.
6. Pull the piece of vinyl from underneath the pinch roller.
7. Repeat several times until all residue is removed from the drive sleeves.
Clean the substrate sensor

Over time, the substrate sensor may become dirty with accumulated residue from the substrate, which may cause the cutter to malfunction.

Clean the sensor by wiping it with a cotton swab.

Clean the Y-guide rail

There are two V-shaped areas on the Y-guide rail on which the tool carriage slides from left to right. The areas are on the top and on the bottom of the front of the Y guide.

Although the shape of the Y-guide rail may differ from model to model, the areas are located in the same place at the top and bottom of the guide.

The illustration below shows the top of the Y guide.

Over time, there may be some accumulated residue on these sliding surfaces and on the rollers of the tool carriage.

Clean the sliding surfaces

1. Turn off the cutter.
2. Take a soft cloth, dampened with isopropyl alcohol or mild detergent.

 NOTE: If you are in an area (such as California) that regulates VOC cleaning and maintenance fluids, instead of isopropyl alcohol use a VOC-certified cleaner such as a properly diluted Simple Green All-Purpose Cleaner.

3. Clean the surfaces. When the tool carriage is in the way, push it gently to the left or right.
Replace the knife

⚠️ WARNING! The cutter uses razor-sharp knives. To avoid serious injury, be careful when installing, removing, or handling the knife.

Remove the drag knife

1. Loosen the head clamp screw (1), swing the clamp arm back, and remove the knife holder from the clamp (2).

2. Turn the knurled adjustment knob (3) clockwise to push the knife (4) out of the holder (5).

3. Carefully pull the knife from the holder.

Install the drag knife

1. Remove the aluminum piece from the plastic knife holder (5) by turning the knurled adjustment knob (3) counterclockwise until the aluminum piece comes out of the holder.

2. Insert the conical, non-cutting end of the knife into the opening in the narrow end of the holder. Gently push the knife all the way in.

3. Turn the holder upside down and tap it lightly on a solid surface to ensure the knife is completely inserted.

4. Slowly turn the knurled knob clockwise until the tip of the blade extends the distance required for the desired cutting substrate (t), as shown in figure below.
5. Insert the knife holder into the head clamp and push it all the way down (1).

6. Tighten the clamp screw (2).

⚠️ WARNING! Take care not to cut yourself.

After installing a new knife, you should set the knife offset (see below) and recalibrate the OPOS sensor (see Calibrate the OPOS sensor on page 53).

Change the drag knife offset

The offset is the distance between the center of the knife and its tip. The offset should be set whenever the knife is changed, and should be checked if the knife shows signs of wear.

Typical offsets

- 0.41–0.45 for standard knives
- 0.49–0.52 for the 60 degree knife
- 0.90–0.97 for sandblast knives

NOTE: A sandblast knife should be used when the substrate is thicker than 0.25 mm (0.01 in).

Change the offset

1. Turn on the cutter, load substrate, and mount the tool.
2. Press 📜.
3. Press ⬆️ or ⬇️ to scroll through the menu until you reach **Knife offset**. Press ✂️. The current offset appears on the screen.
4. Press ← or → to change the offset.
 - Press ⬆️ to perform the internal knife offset test.
 - Press ✂️ to confirm the chosen offset.
 - Press ✗ to leave the offset unchanged.

When the offset is correct, the test pattern looks like this:

ENWW
When the offset is too low, the test pattern looks like this:

When the offset is too high, the test pattern looks like this:

Change the fuse

⚠️ **WARNING!** Before changing the fuse, turn off the cutter and ensure that it is completely disconnected from its power source.

⚠️ **WARNING!** For continued protection against risk of fire, replace only with the same type and rating of fuse: T2.0A, 250V Schurter SPT or equivalent.

1. To remove the fuse (3), lightly pry the fuse holder release clip (2) in the direction opposite the power switch. The fuse holder will pop free.

2. Remove the fuse holder.

3. Pull the fuse from the holder.

4. Put the new fuse in the holder and clip the holder back into place.
Update the firmware

1. Ensure that you have HP Cutter Control installed. It is installed automatically during Print and Cut setup; if you have uninstalled it, you can download and reinstall it.

2. Run HP Cutter Control by double-clicking its icon.

3. In HP Cutter Control, search for the cutter. The application searches the LAN by default; if that fails, you can connect by USB cable. The cutter details should appear in the Machine Info screen.

4. Click **Actions > Upgrade firmware**.

5. Download the firmware update file.

6. Restart the cutter.
7 Troubleshooting

Cutting quality is not satisfactory

1. Perform the confidence test, and check whether quality issues are also visible in this internal test. If not, perhaps the problem is in the file.
2. Perform the knife pressure test, and replace knife if it is worn out. For regular vinyl, the knife pressure should be around 60–80 g for kiss cutting. When the knife starts to wear down, the pressure will increase.
3. Check that the knife is assembled correctly and doesn’t stick out too much from its holder. The knife should protrude only slightly.
4. Check that the knife holder is assembled correctly, and pushed far enough into the head clamps. The distance between the bottom of the knife holder and the cutting strip should be close to 3 mm.
5. Check the knife offset value. Every knife has its own offset value. The offset is the distance from the knife tip to the center of the knife. When the offset is not set correctly, the corners of the cut job will be of low quality.
6. Check other parameters such as OptiCut, TurboCut, Overcut, and FlexCut, which could also influence the cutting quality.
7. Replace the knife.
8. Check the cutting strip. The cutting strip will also wear down, because the knife is always cutting in the same, central position of the cutting strip. A small dent is created in places on the cutting strip when the strip needs to be replaced.

Substrate is drifting and you have tracking issues

1. Ensure that the substrate flanges are used with substrate rolls.
2. Ensure that the substrate flanges are both positioned on the substrate flange guides.
3. Ensure that the outside pinch rollers are always positioned 5 mm over the edge of the substrate.
4. Try reducing the cutting speed.

Substrate jams

1. Try reducing the cutting pressure.
2. If you are using FlexCut, the parameters may not be set up correctly, so that the substrate starts to lose integrity or falls apart. Experiment with FlexCut parameters until you find ones that work.
3. You may be using FlexCut for shapes that are too complex. It should be used for simple shapes only.
4. Try reducing the cutting speed. If you cut too fast, the substrate may not have time to fold correctly in the basket.

5. Your jobs may be too long, causing problems in the basket. Try dividing jobs into shorter segments, such as one-meter panels.

Cutter cannot detect HP barcode or registration marks

1. Ensure that you position the cutting head correctly when the cutter prompts you to do so. Carefully read the instructions on the cutter’s screen when starting a cutting job.

2. This problem most often occurs with substrates that are colored or have certain laminations. Remember to calibrate the substrate before using it. See Calibrate the substrate on page 19.

3. Check whether the sensor touches the substrate during barcode and marker detection.

Calibrate the OPOS sensor

1. Turn on the cutter and load black vinyl with white backing.

 IMPORTANT: Black vinyl with white backing must be used when calibrating OPOS. The substrate calibration setting should be set to the default value.

2. Set the head’s origin above a clean, blank part of the vinyl.

3. Press 📅.

5. Press 🎨 or 🎨 until you reach Calibrations. Press ⏯.

6. Press 🎨 or 🎨 to scroll through the menu until you reach Cal OPOS. Press ⏯. The cutter cuts out a square measuring approximately 9.5 × 9.5 mm and move the square forward. Weed rectangle appears on the screen.

7. Carefully weed the square, making sure the edges stay intact. Press ⏯. OPOS reads the edges of the square and calibrates itself accordingly.

NOTE: To maintain the accuracy of the OPOS sensor, repeat this calibration whenever you install a knife.
There are two alternative ways to order supplies or accessories:

- Visit http://www.hp.com/go/latex300/accessories on the Web. There you will also see the latest list of supplies and accessories for your cutter.
- Contact HP Support (see When you need help on page 11), and check that what you want is available in your area.

The rest of this chapter lists the available supplies and accessories, and their part numbers, at the time of writing.

Order accessories

The following accessories can be ordered for your cutter.

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP Latex Standard Blade Kit</td>
<td>1UP44A</td>
</tr>
<tr>
<td>HP Latex Specialty Blade Kit</td>
<td>1UP45A</td>
</tr>
<tr>
<td>HP Latex 2-in Media Holder Kit</td>
<td>1UP27A</td>
</tr>
<tr>
<td>HP Latex Cutter Extended Kit</td>
<td>1UP26A</td>
</tr>
</tbody>
</table>

HP Latex Standard Blade Kit

HP Latex Standard Blades are used to cut most common print-and-cut substrates, such as self-adhesive vinyl. This kit contains five blades and a cutting strip.

HP Latex Specialty Blade Kit

HP Latex Specialty Blades are used to cut some transfer substrates, and are also useful to produce rhinestone applications. This kit contains five blades and a cutting strip.

HP Latex 2-in Media Holder Kit

HP Latex 2-in Media Holders are available for loading rolls of substrate. This kit contains a set of two holders, one for each side of the substrate roll.
HP Latex Cutter Extended Kit

This kit contains the following items:

- **Sandblast blades and holder**
 Sandblast blades are used for some very specific applications such as gravestones. These blades need a special blade holder.

- **Pouncing kit, pin, and strip**
 The pouncing pin can be used if you prefer to pierce the substrate instead of cutting it. It comes together with a pouncing kit and a cutting strip.

- **Black pen and pen holders**
 The pen can be used if you want to use the contour cutter as a drawing device. It comes with two pen holders.

Set the tool type

The cutter is supplied with a knife, and alternative tools are available as accessories. All tools have one parameter in common: the pressure. Other parameters are specific to the tool. Tool parameters can be changed by changing them for the current user, or by changing the user.

NOTICE: The cutter will perform as specified only if a genuine HP tool is installed. Do not replace the standard knife with products from other manufacturers.

1. Turn on the cutter.
2. Press 🌴.
3. Press 🌴 or 🌴 until you reach Tool. Press 🌴.
4. Press 🌴 or 🌴 to change the tool.
5. Press 🌴 to confirm. An asterisk appears by the name of the tool, indicating that it is now selected.
6. Press 🌴 twice to leave the menu.
9 Specifications

Cutter dimensions

<table>
<thead>
<tr>
<th></th>
<th>HP Latex 54 Cutter</th>
<th>HP Latex 64 Cutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1145 mm (45.1 in)</td>
<td>1145 mm (45.1 in)</td>
</tr>
<tr>
<td>Width</td>
<td>1750 mm (68.9 in)</td>
<td>1980 mm (77.9 in)</td>
</tr>
<tr>
<td>Depth</td>
<td>680 mm (26.8 in)</td>
<td>680 mm (26.8 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>42 kg (92 lb)</td>
<td>54 kg (119 lb)</td>
</tr>
</tbody>
</table>

Shipping dimensions

<table>
<thead>
<tr>
<th></th>
<th>HP Latex 54 Cutter</th>
<th>HP Latex 64 Cutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>670 mm (26.4 in)</td>
<td>670 mm (26.4 in)</td>
</tr>
<tr>
<td>Width</td>
<td>1880 mm (74.0 in)</td>
<td>2110 mm (83.1 in)</td>
</tr>
<tr>
<td>Depth</td>
<td>480 mm (18.9 in)</td>
<td>480 mm (18.9 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>69 kg (152 lb)</td>
<td>78 kg (172 lb)</td>
</tr>
</tbody>
</table>

Substrate dimensions

<table>
<thead>
<tr>
<th></th>
<th>HP Latex 54 Cutter</th>
<th>HP Latex 64 Cutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum width</td>
<td>180 mm (7.1 in)</td>
<td>180 mm (7.1 in)</td>
</tr>
<tr>
<td>Maximum width</td>
<td>1410 mm (55.5 in)</td>
<td>1635 mm (64.4 in)</td>
</tr>
<tr>
<td>Pinch rollers</td>
<td>4 (3 for FX)</td>
<td>4</td>
</tr>
<tr>
<td>Maximum working width</td>
<td>1350 mm (53.1 in)</td>
<td>1575 mm (52.1 in)</td>
</tr>
<tr>
<td>Maximum working width (oversized)</td>
<td>1380 mm (54.3 in)</td>
<td>1605 mm (63.2 in)</td>
</tr>
</tbody>
</table>

HP Latex 54 and 64 Cutters

<table>
<thead>
<tr>
<th></th>
<th>HP Latex 54 and 64 Cutters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum working length</td>
<td>50 m (164 ft)</td>
</tr>
<tr>
<td>Minimum margins</td>
<td>25 mm (1 in)</td>
</tr>
<tr>
<td>Front margin</td>
<td>18 mm (0.7 in)</td>
</tr>
</tbody>
</table>
HP Latex 54 and 64 Cutters

<table>
<thead>
<tr>
<th>Rear margin (sensor on)</th>
<th>42 mm (1.7 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear margin (sensor off)</td>
<td>25 mm (1 in)</td>
</tr>
</tbody>
</table>

HP Latex 54 and 64 Cutters

<table>
<thead>
<tr>
<th>Tracking performance</th>
<th>Up to 8 m (26 ft) within guaranteed specifications for substrates less than 762 mm (30 in) wide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 4 m (13 ft) within guaranteed specifications for substrates more than 762 mm (30 in) wide</td>
</tr>
<tr>
<td></td>
<td>Longer substrates can be handled, but then compliance with specifications is not guaranteed</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.05 to 0.25 mm (0.002 to 0.01 in) with standard knife</td>
</tr>
<tr>
<td></td>
<td>Up to 0.8 mm (0.03 in) with optional sandblast knife</td>
</tr>
</tbody>
</table>

NOTE: Tracking performance is not guaranteed in oversized mode.

Performance

This performance is achieved with wax-backed vinyl 0.05 mm (0.002 in) thick, total thickness not more than 0.25 mm (0.01 in).

<table>
<thead>
<tr>
<th>Cut type</th>
<th>Drag-knife with TurboCut and Tangential emulation modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut width</td>
<td>135 cm (53.1 in) for the HP Latex 64 Cutter</td>
</tr>
<tr>
<td></td>
<td>158 cm (62.2 in) for the HP Latex 54 Cutter</td>
</tr>
<tr>
<td>Cut speed</td>
<td>Up to 113 cm/s (44 in/s) diagonal</td>
</tr>
<tr>
<td>Acceleration</td>
<td>Up to 3 G diagonal</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.2% of movement or 0.25 mm (0.01 in), whichever is greater</td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.1 mm (0.004 in)</td>
</tr>
<tr>
<td>Cut force</td>
<td>0 to 400 g of downforce, in 5 g steps</td>
</tr>
<tr>
<td>Cut thickness</td>
<td>0.05 to 0.25 mm (0.002 to 0.01 in)</td>
</tr>
<tr>
<td></td>
<td>0.8 mm (0.03 in) with optional sandblast blade</td>
</tr>
</tbody>
</table>

NOTE: The repeatability and accuracy specifications are valid within the guaranteed tracking length (see previous table), but not in oversized mode.

Firmware

<table>
<thead>
<tr>
<th>Language</th>
<th>DM/PL, HP-GL (758x emulation), HP-GL/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported character sets</td>
<td>Standard ASCII</td>
</tr>
<tr>
<td>Supported fonts</td>
<td>Sans serif (single stroke and medium)</td>
</tr>
<tr>
<td>ROM-based plots</td>
<td>Confidence plot, DIN plot</td>
</tr>
</tbody>
</table>
Environment

These specifications are for the cutter without substrate.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>15 to 35°C (59 to 95°F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-30 to 70°C (-22 to 158°F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>35 to 75%, non-condensing</td>
</tr>
</tbody>
</table>

TIP: The use of dimensionally stable substrate is an essential pre-requisite to obtain high cut quality. Additionally, substrate expansion or contraction may occur as a result of temperature variations. To improve the dimensional stability of substrate, let it stabilize to the current environmental conditions before use, for a minimum period of 24 hours.

Electrical

The power entry module detects the line voltage and switches automatically between 100 V and 240 V.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>100–127/200–240 V ±10%</td>
</tr>
<tr>
<td>Input frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Maximum load current</td>
<td>2 A</td>
</tr>
<tr>
<td>Power consumption</td>
<td>85 VA</td>
</tr>
<tr>
<td>Fuses</td>
<td>T2.0A 250V</td>
</tr>
</tbody>
</table>

WARNING! For continued protection against risk of fire, replace fuses only with the same type and rating of fuse.
Index

A
accessories 54

C
care 5
clean cutter surfaces 46
clean drive system 46
clean substrate sensor 47
clean Y-guide rail 47
components of cutter 6
connection to a computer 8
Customer Care 11
Customer Self Repair 12
cut through 27
cutter models 2
cutter on/off 8
cutter’s main components 6
cutter’s main features 2

D
direct cut 25
documentation 2

E
Ethernet connection 8
extended load 26

F
firmware update 51
front panel 10
 main menu 37
 system setup menus 39
front view 6
fuse, change 50

H
HP barcode 24
HP barcode automation 31
HP barcode, read 33
HP Customer Care 11

J
job
 direct cut 25
 print and cut 25

K
kiss cut 27
knife depth 20
knife pressure 20
knife replacement 48

L
labels, warning 5
LAN connection 8
length calibration 21
links 11

M
manuals 2
markers
 register 28

O
offset 49
on/off 8
OPOS calibration 53
OPOS origin 31
OPOS sensor parameters 28
OPOS XY 24
origin 26

P
pinch rollers
 position 17
power on/off 8
pressure 20
print and cut 25

Q
QR code 3

R
rear view 7

S
safety labels 5
safety precautions 3
specifications 56
speed 21
substrate
 cut 24
 load 13
substrate calibration 19
support services
 HP Customer Care 11

T
telephone number 12
telephone support 11
tool type 55
troubleshooting 52

U
USB connection 8
user 22

V
velocity 21

W
warning 5
warning labels 5
welcome to your cutter 2

ENWW Index 59