Contenuto
Questo documento fornisce la descrizione e le istruzioni relative agli strumenti disponibili per la configurazione, la gestione, il monitoraggio e la diagnosi dei server e controller HP ProLiant. Questa guida è destinata agli addetti all'installazione, all'amministrazione e alla manutenzione dei server e dei sistemi di memorizzazione. L'installazione deve essere eseguita da personale qualificato in servizi di supporto ad apparecchiature informatiche e in grado di riconoscere i pericoli connessi all'utilizzo di prodotti che possono generare potenziali elettrici pericolosi.
Sommario

1 Panoramica sulla configurazione degli array ... 1
 Vantaggi di HP SSA ... 1
 Supporto per attività di configurazione ... 2
 Linee guida relative alla configurazione degli array ... 4
 Requisiti minimi ... 4

2 HP Smart Array Advanced Pack .. 5
 Informazioni su SAAP .. 5

3 HP Smart Storage Administrator ... 6
 Informazioni su HP SSA .. 6
 Supporto nativo per sistemi operativi a 64 bit e 32 bit ... 6
 Accesso ad HP SSA in ambiente offline .. 7
 Avvio di HP SSA con HP Intelligent Provisioning (Gen8 o versione successiva) 7
 Avvio di HP SSA durante il POST (Gen8 o versione successiva) 7
 Avvio di HP SSA da un'immagine ISO (tutte le generazioni) 7
 Attivazione dell'immagine su un'unità locale ... 8
 Attivazione dell'immagine mediante iLO ... 8
 Masterizzazione dell'immagine su CD o DVD ... 8
 Memorizzazione dell'immagine su un'unità USB o scheda SD 9
 Installazione dell'immagine su un server PXE ... 9
 Impostazione di PXELinux ... 10
 Configurazione di PXELinux ... 10
 Specificazione del percorso dell'immagine ISO ... 11
 File system di rete supportati .. 11
 Accesso ad HP SSA in ambiente online ... 12
 Avvio di HP SSA in un server locale .. 12
 Avvio di HP SSA in un server locale per configurare un server remoto 13
 Avvio di HP SSA in un server remoto per configurare un server locale 15
 Utilizzo dell'interfaccia grafica di HP SSA .. 16
 Legenda delle icone e dei tasti .. 16
 Esplorazione dell'interfaccia utente .. 17
 Schermata Configure (Configura) ... 20
 Schermata Diagnostics (Diagnostica) .. 21
 Guida di HP SSA ... 22
 Attività di configurazione ... 22
Configurazione di un controller ... 25
Esecuzione di un'attività di configurazione .. 26
HP SSD Smart Path ... 27
Rapid Parity Initialization (Inizializzazione rapida della parità) 29
Modifica della modalità di attivazione unità di riserva 30
Modifica della modalità di gestione delle unità di riserva 31
Gestione della cache ... 33
Informazioni su HP SmartCache ... 35
Enable HP SmartCache (Abilita HP SmartCache) 35
Installazione di una chiave di licenza con HP SmartCache 37
Utilizzo di array in mirroring ... 38
Suddivisione di un array in mirroring .. 38
Ricombinazione di un array in mirroring suddiviso 39
Creazione di un backup del mirroring di suddivisione 39
Re-mirroring, roll back o riattivazione di un backup del mirroring di suddivisione ... 40
Riparazione di un array ... 41
Sostituzione di un array ... 42
Attività di diagnostica ... 42
Esecuzione di un'attività di diagnostica .. 43
Uso della CLI di HP SSA ... 44
Apertura della CLI in modalità Console ... 45
Apertura della CLI in modalità Command ... 45
Sintassi CLI ... 46
La variabile <target> ... 46
La variabile <command> ... 46
Interrogazione di un dispositivo .. 47
Come nascondere i messaggi di avviso ... 47
Abbreviazioni delle parole chiave .. 48
Comando show .. 48
Visualizzazione delle versioni in uso dei livelli dell'applicazione 51
Comando help ... 51
Procedure tipiche ... 52
Impostazione del controller di avvio .. 52
Impostazione del volume di avvio ... 52
Impostazione del target ... 52
Impostazione del target ... 52
Identificazione dei dispositivi ... 55
Eliminazione dei dispositivi target ... 55
Generazione di un rapporto di diagnostica .. 55
Cancellazione di un'unità fisica .. 56
Riscansione del sistema ... 56
Immissione o eliminazione di una chiave di licenza .. 56
Ottimizzazione delle prestazioni del controller per il video 57
Creazione di un'unità logica .. 57
Scenario di esempio .. 58
Spostamento di un'unità logica ... 60
Visualizzazione delle informazioni sui contenitori .. 61
Visualizzazione di unità fisiche per un HBA ... 61
Visualizzazione delle unità fisiche SSD .. 61
Visualizzazione delle informazioni sulle unità SSD ... 62
SmartCache in HPSSACLI ... 62
Metodi di Rapid Parity Initialization (Inizializzazione rapida della parità) 62
Assegnazione di un nome di telaio al controller ... 63
Gestione delle unità di riserva .. 63
Impostazione della modalità di attivazione unità di riserva 64
Modalità di gestione delle unità di riserva in HPSSACLI 64
Espansione di un array ... 64
Riduzione di un array ... 65
Spostamento di un array .. 65
Sostituzione di un array .. 66
Estensione di un'unità logica ... 67
Migrazione di un'unità logica ... 67
Impostazione della modalità di selezione del percorso preferito 68
Assegnazione di un controller ridondante a un'unità logica 68
Disabilitazione di un controller ridondante ... 69
Modifica dell'impostazione della priorità di ricostruzione 69
Modifica dell'impostazione della priorità di espansione 70
Impostazione della modalità scansione di superficie 70
Modifica del ritardo di scansione della superficie .. 70
Riabilitazione di un'unità logica guasta ... 71
Modifica del rapporto cache del controller .. 71
Attivazione o disattivazione della cache dell'unità ... 71
Attivazione o disattivazione dell'acceleratore di array 71
Attivazione della chiusura di uno script in seguito a errore 72
Uso dello scripting di HP SSA .. 72
Acquisizione di una configurazione .. 72
Utilizzo di uno script di immissione ... 73
Creazione di un file di script HP SSA ... 73
Script di immissione personalizzato di esempio .. 74
Opzioni del file di script .. 75
Categoria Control .. 77
Modalità Action ... 77
Modalità Method .. 77
Categoria Controller .. 78
 Controller .. 78
 CacheState ... 79
 ClearConfigurationWithDataLoss ... 79
 DriveWriteCache .. 79
 LicenseKey, DeleteLicenseKey .. 79
 NoBatteryWriteCache ... 79
 PreferredPathMode ... 79
 RaidArrayId ... 80
 ReadCache, WriteCache .. 80
 RebuildPriority, ExpandPriority ... 80
 SurfaceScanDelay .. 80
 SurfaceScanDelayExtended ... 80
 SurfaceScanMode .. 81
Opzioni relative alle prestazioni video ... 81
Categoria Array ... 81
 Array ... 82
 CachingArray .. 82
 Unità ... 82
 DriveType ... 83
 Join ... 83
 OnlineSpareMode ... 84
 OnlineSpare .. 84
 Split ... 84
Categoria Logical Drive ... 85
 ArrayAccelerator ... 85
 LogicalDrive .. 85
 CachingLogicalDrive ... 85
 CachedLogicalDrive ... 86
 NumberOfParityGroups .. 86
 PreferredPath ... 86
 RAID ... 86
 Renumber ... 87
 Repeat .. 87
 ResourceVolumeOwner ... 87
 Sectors ... 88
 ShrinkSize .. 88
 Dimensione .. 88
 SizeBlocks ... 88
1 Panoramica sulla configurazione degli array

Vantaggi di HP SSA

HP Smart Storage Administrator è un'utility avanzata che consente di eseguire molte complesse attività di configurazione. In precedenza, altre utility HP, tra cui ACU e ORCA, erano consigliate per la configurazione di archiviazione.

ACU è ancora supportata, ma è sostituita dall'utility HP SSA a partire dai server HP ProLiant Gen8.

L'interfaccia grafica utente di ACU è molto diversa dalla GUI di HP SSA. Di seguito vengono indicate alcune delle principali differenze:

- Le schede in ACU sono integrate nel menu **Configure** (Configura) di HP SSA.
- Il formato a 2 pannelli di ACU è sostituito da un formato a 3 pannelli in HP SSA.
- HP SSA include un menu di navigazione rapida per accedere alle opzioni di diagnostica e di configurazione per un determinato controller.
- Con un controller HP Smart Array Gen8, la maggior parte delle opzioni non richiede una licenza SAAP.
- HP SSA non include una funzione di procedure guidate.
- HP SSA include un'utility di diagnostica autonoma eseguibile in modalità CLI ([CLI dell'utility di diagnostica HP Smart Storage Administrator a pagina 102](#)).

HP SSA offre supporto completo per attività di configurazione standard e avanzate ([Supporto per attività di configurazione a pagina 2](#)). Alcune di queste attività avanzate non sono disponibili in tutti i formati di interfaccia di HP SSA (GUI, CLI e scripting).

L'utilizzo di HP SSA al posto di altre utility di configurazione offre i seguenti vantaggi:

- Sono disponibili interfacce nei formati GUI, CLI e scripting.
- Sono supportate le lingue inglese, francese, tedesco, italiano, giapponese, cinese semplificato e spagnolo.
- Le applicazioni possono essere eseguite utilizzando i seguenti strumenti:
 - Qualsiasi supporto avviabile, ad esempio un CD software
 - Qualsiasi sistema operativo host supportato con un browser Web (Microsoft Windows 2003 non è supportato. Per un elenco dei sistemi operativi supportati, vedere il sito Web HP (http://www.hp.com/go/ossupport)).
 - Intelligent Provisioning, incorporato in HP ProLiant Gen8 e in server più recenti
- È possibile eseguire tutti i formati in ambienti in linea e non in linea.
- L'utility può essere eseguita su qualsiasi computer che utilizza un browser supportato.

ITWW

Vantaggi di HP SSA

1
Supporto per attività di configurazione

Nella seguente tabella vengono utilizzati questi simboli:

+ : il controller supporta l'attività indicata attraverso HP SSA.

– : il controller supporta l'attività indicata attraverso HP SSA solo con una chiave di licenza SAAP registrata.

: il controller supporta l'attività indicata attraverso HP SSA solo con una chiave di licenza SmartCache registrata.

Per identificare i requisiti SAAP e il supporto delle funzionalità specifiche di un determinato controller, fare riferimento alla guida utente del controller o al sito Web HP (http://www.hp.com/go/smartarray).

Per ulteriori informazioni, vedere "Informazioni su SAAP" (Informazioni su SAAP a pagina 5).

<table>
<thead>
<tr>
<th>Procedura</th>
<th>Controller HP Smart Array G6 e G7</th>
<th>Controller HP Smart Array Gen8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attivazione o eliminazione di chiavi di licenza</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Assegnazione di un livello RAID a un'unità logica</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Assegnazione di un'unità di riserva a un array</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Configurazione di più sistemi in modo identico</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>Configurazione di un'unità logica RAID 6</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Configurazione di un'unità logica RAID 60</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Configurazione di RAID 1 (ADM) e RAID 10 (ADM)</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Copia della configurazione di un sistema a più sistemi</td>
<td>–1</td>
<td>+1</td>
</tr>
<tr>
<td>Creazione di più unità logiche per array</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Creazione o eliminazione di array e unità logiche</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abilitazione o disabilitazione della cache di scrittura dell'unità fisica</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abilitazione delle unità a stato solido per l'impiego nei dispositivi di memorizzazione nella cache utilizzando HP SmartCache</td>
<td>n/d</td>
<td>#</td>
</tr>
<tr>
<td>Abilitazione del percorso dati ottimizzato nelle unità a stato solido utilizzando HP SSA Smart Path</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Espansione di un array</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Estensione di un'unità logica</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Riparazione di un array</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Procedura</td>
<td>Controller HP Smart Array G6 e G7</td>
<td>Controller HP Smart Array Gen8</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>HP Drive Erase (sostituzione del contenuto di un'unità fisica con zero o 0 e 1 in ordine casuale)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Identificazione dei dispositivi tramite il lampeggiamento dei LED</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Migrazione del livello RAID o della dimensione di stripe</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spostamento di un array (copia di tutti i dati dell'array a uno nuovo e successiva eliminazione dell'array precedente)</td>
<td>-2</td>
<td>+</td>
</tr>
<tr>
<td>Spostamento ed eliminazione delle singole LUN</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ottimizzazione delle prestazioni del controller per il video</td>
<td>-2</td>
<td>+</td>
</tr>
<tr>
<td>Riabilitazione di un'unità logica guasta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione del controller di avvio</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione di priorità di espansione, priorità di migrazione e rapporto dell'acceleratore</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione della modalità di attivazione delle unità di riserva</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione della dimensione di stripe</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione del ritardo di scansione superficie</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione del controller preferito per un'unità logica (nei sistemi che supportano controller ridondanti)</td>
<td>+2</td>
<td>+</td>
</tr>
<tr>
<td>Condivisione di un'unità di riserva tra più array</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rimozione di un'unità da un array (ricreazione degli stripe dei dati su un array per ridurre il numero di unità fisiche utilizzato e successiva rimozione delle unità in eccesso dall'array)</td>
<td>+/-2</td>
<td>+</td>
</tr>
<tr>
<td>Impostazione della dimensione dell'unità logica</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Suddivisione di un array RAID 1 o ricombinazione di un array suddiviso (solo offline)</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Backup del mirroring di suddivisione e rollback di mirror RAID 1, RAID 1+0, RAID 1 (ADM) o RAID 10 (ADM)</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

1 La modalità scripting è quella più efficiente per questa attività.
2 L'attività è supportata solo nella schermata Configuration (Configurazione).
Linee guida relative alla configurazione degli array

Durante la creazione di un array, tenere presente quanto segue:

- È necessario che tutte le unità raggruppate in un'unità logica siano dello stesso tipo, ad esempio, tutte SAS o tutte SATA e tutte unità disco rigido o unità a stato solido.
- Per un utilizzo ottimale dello spazio su disco, è necessario che tutte le unità nell'array dispongano della stessa capacità. Ogni utility di configurazione gestisce ogni unità fisica dell'array considerandola della stessa capacità dell'unità più piccola presente nell'array. Non è pertanto possibile utilizzare la capacità aggiuntiva di una determinata unità installata nell'array per la memorizzazione dei dati.
- Quanto più alto è il numero di unità fisiche configurate nell'array, maggiore è la probabilità che si verifichi un errore di unità dell'array in un dato periodo di tempo.
- Per proteggersi dalla perdita di dati causata da errori delle unità, configurare tutte le unità logiche dell'array con un metodo di tolleranza agli errori (RAID) adeguato. Per ulteriori informazioni, vedere "Array dell'unità e metodi di tolleranza agli errori (Array dell'unità e metodi di tolleranza agli errori a pagina 107)".

Requisiti minimi

Per i requisiti minimi dei sistemi operativi per eseguire qualsiasi formato HP SSA, vedere il sito Web HP (http://www.hp.com/go/ossupport).

I requisiti video minimi per eseguire la GUI di HP SSA includono una risoluzione del monitor minima di 1024x768 e 16 bpp. La GUI supporta i seguenti browser:

- Mozilla Firefox 9.0 o versione successiva
- Microsoft Internet Explorer 8.0 o versione successiva
- Google Chrome

Per un elenco dei controller supportati, vedere la pagina "HP Smart Array RAID Controllers" sul sito Web HP (http://www.hp.com/go/smartarray).
Informazioni su SAAP

SAAP è una raccolta di funzioni avanzate aggiuntive del controller integrate nel firmware di determinati controller Smart Array.

Per accedere alle funzionalità SAAP, attivare il software con una chiave di licenza registrata.

SAAP 1.0 fornisce le seguenti funzionalità per i controller HP Smart Array G6 e G7:

- RAID 6 (ADG)
- RAID 60
- Espansione capacità avanzata
- Suddivisione e ricombinazione di mirroring in modalità offline
- Cancellazione delle unità fisiche
- Ottimizzazione delle prestazioni per video su richiesta
- Dual domain

Per accedere alle funzioni SAAP per i controller HP Smart Array G6 e G7, è necessario acquistare una chiave di licenza da HP. Per ottenere la chiave di licenza, vedere la pagina del prodotto SAAP sul sito Web HP (http://www.hp.com/go/SAAP).

Per installare la chiave di licenza e attivare SAAP, eseguire una delle seguenti procedure:

- Installazione della chiave di licenza con HP SSA (Installazione di una chiave di licenza con HP SmartCache a pagina 37)
- Installazione della chiave di licenza con la CLI di HP SSA (Immissione o eliminazione di una chiave di licenza a pagina 56)
- Installazione della chiave di licenza con lo scripting HP SSA (LicenseKey, DeleteLicenseKey a pagina 79)

Per le attività di configurazione HP SSA avanzate, sono necessarie alcune funzioni SAAP. Per un elenco di queste attività, consultare "Supporto di attività di configurazione avanzate (Supporto per attività di configurazione a pagina 2)".
3 HP Smart Storage Administrator

Informazioni su HP SSA

HP SSA rappresenta il principale strumento utilizzato per la configurazione di array su controller HP Smart Array ed è disponibile in tre formati di interfaccia: GUI, CLI e scripting. Tutti i formati offrono il supporto per le attività di configurazione (Supporto per attività di configurazione a pagina 2). Alcune attività avanzate di configurazione sono disponibili solo in un formato.

Le funzionalità di diagnostica in HP SSA sono disponibili anche nel software standalone di diagnostica HP Smart Storage Administrator eseguibile in modalità CLI (CLI dell'utility di diagnostica HP Smart Storage Administrator a pagina 102).

A partire da HP SSA, dai server ProLiant Gen8 e dai server blade, è possibile accedere ad HP SSA sia in linea che non in linea:

- **Accesso ad HP SSA in ambiente offline** (Accesso ad HP SSA in ambiente offline a pagina 7)

 Prima di avviare il sistema operativo host è possibile eseguire HP SSA scegliendo uno dei diversi metodi disponibili. In modalità non in linea gli utenti possono configurare o effettuare la manutenzione sui dispositivi ProLiant rilevati e supportati, come i controller Smart Array opzionali e i controller Smart Array integrati. Alcune funzionalità SSA di HP sono disponibili soltanto in un ambiente non in linea, ad esempio l'impostazione del controller di avvio e del volume di avvio.

- **Accesso ad HP SSA in ambiente online** (Accesso ad HP SSA in ambiente online a pagina 12)

 Questo metodo richiede la presenza di un amministratore per scaricare e installare i file eseguibili di HP SSA. È possibile eseguire l'utility HP SSA online dopo aver avviato il sistema operativo host.

Supporto nativo per sistemi operativi a 64 bit e 32 bit

HP SSA è disponibile sia come applicazione a 64 bit nativa per i sistemi operativi a 64 bit supportati, eliminando la necessità di librerie di compatibilità, sia come applicazione a 32 bit. Gli utenti possono scegliere di installare l'applicazione che corrisponde al sistema operativo installato nel server.

L'applicazione HP SSA a 64 bit non è un aggiornamento diretto di HP SSA a 32 bit. Nei sistemi a 64 bit su cui viene eseguita HP SSA a 32 bit, è necessario disinstallare l'applicazione a 32 bit e installare quella a 64 bit.

Le versioni future di HP SSA saranno disponibili come applicazioni native a 32 bit o 64 bit finché i sistemi operativi a 32 bit saranno supportati.
Accesso ad HP SSA in ambiente offline

Per accedere alla GUI di HP SSA e avviarla in un ambiente non in linea, utilizzare uno dei seguenti metodi:

- Avvio di HP SSA con HP Intelligent Provisioning (Gen8 o versione successiva) ([Avvio di HP SSA con HP Intelligent Provisioning (Gen8 o versione successiva) a pagina 7])
- Avvio di HP SSA durante il POST (Gen8 o versione successiva) ([Avvio di HP SSA durante il POST (Gen8 o versione successiva) a pagina 7])
- Avvio di HP SSA da un'immagine ISO (tutte le generazioni) ([Avvio di HP SSA da un'immagine ISO (tutte le generazioni) a pagina 7])

Per accedere alla modalità scripting o CLI di HP SSA in un ambiente non in linea è necessario avviare HP SSA da un'immagine ISO.

Quando si avvia HP SSA in ambiente in linea, non viene visualizzata la schermata Execution Mode (Modalità di esecuzione), poiché HP SSA non supporta la modalità Remote Service (Servizio remoto) in tale ambiente. Per poter sfruttare questa funzionalità, utilizzare HP SSA in un ambiente online ([Accesso ad HP SSA in ambiente online a pagina 12]).

Avvio di HP SSA con HP Intelligent Provisioning (Gen8 o versione successiva)

1. Avviare il server.
2. Per avviare HP Intelligent Provisioning, premere F10.
3. Nella schermata principale, selezionare Perform Maintenance (Esegui manutenzione).
4. Nella schermata Maintenance (Manutenzione), selezionare HP Smart Storage Administrator (HP SSA).

Viene avviata la GUI di HP SSA.

Avvio di HP SSA durante il POST (Gen8 o versione successiva)

1. Avviare il server.
 Durante il POST, il sistema rileva i dispositivi.
2. Quando il sistema rileva un controller Smart Array, premere F5.

Viene avviata la GUI di HP SSA oppure, se si sta utilizzando la console seriale, viene avviata la CLI di HP SSA.

Avvio di HP SSA da un'immagine ISO (tutte le generazioni)

Per avviare HP SSA è possibile anche lanciarla da un'immagine ISO. Per preparare l'immagine, utilizzare uno dei seguenti metodi:

- Attivazione dell'immagine su un'unità locale ([Attivazione dell'immagine su un'unità locale a pagina 8])
- Attivazione dell'immagine mediante iLO ([Attivazione dell'immagine mediante iLO a pagina 8])
- Masterizzazione dell'immagine su CD o DVD ([Masterizzazione dell'immagine su CD o DVD a pagina 8])
● Memorizzazione dell'immagine su un'unità USB o scheda SD (Memorizzazione dell'immagine su un'unità USB o scheda SD a pagina 9)

● Installazione dell'immagine su un server PXE (Installazione dell'immagine su un server PXE a pagina 9)

L'avvio da un'immagine ISO posta su un'unità, una chiave o tramite iLO fornisce la stessa interfaccia GUI. L'utente può scegliere se eseguire la GUI, la CLI o lo scripting di HP SSA in ambiente offline.

Attivazione dell'immagine su un'unità locale

2. Usando il software di attivazione ISO, attivare l'immagine ISO di HP SSO su un'unità in modalità offline.
3. Impostare il server per riavviarsi dall'immagine.
4. Riavviare il server.

Attivazione dell'immagine mediante iLO

Questa funzionalità ISO richiede una licenza iLO Advanced.

2. Passare alla pagina iLO del server.
3. Avviare la console remota per il server.
4. Dalla console remota, usare la funzione di attivazione di iLO per passare al percorso dell'immagine ISO.
5. Selezionare l'immagine ISO da attivare.
6. Riavviare il server.

Masterizzazione dell'immagine su CD o DVD

2. Usare un software di terze parti per masterizzare l'immagine ISO su CD o DVD.
3. Impostare il server per il riavvio dall'unità ottica.
4. Inserire il CD o il DVD.
5. Riavviare il server.
Memorizzazione dell'immagine su un'unità USB o scheda SD

ATTENZIONE: Prima di creare una chiave USB avviabile dall'immagine ISO di HP SSA, eseguire il backup dei dati importanti memorizzati sulla chiave in un'altra unità. L'utility sovrascrive tutti i dati presenti sulla chiave.

3. Usando il software di attivazione ISO, attivare l'immagine ISO di HP SSO su un'unità Windows. Per questo esempio, usare l'unità "E:".

4. Inserire la chiave USB nella porta USB del sistema Windows. Per questo esempio, usare l'unità "F:".

5. Avviare l'utility HP USB Key Utility.

7. Se si accetta il contratto di licenza con l'utente finale, selezionare il pulsante di opzione Agree (Accetto), quindi fare clic su Next (Avanti).

8. Selezionare Create a bootable USB key from CD/DVD (Crea unità flash USB avviabile da CD/DVD), quindi fare clic su Next (Avanti).

L'opzione Select CD/DVD drive: (Seleziona unità CD/DVD:) è selezionata per impostazione predefinita.

10. Dal menu a discesa, selezionare la lettera di unità per la posizione dell'immagine ISO attivata (E:).

Se la posizione non è disponibile, premere Rescan Source (Nuova scansione origine), quindi selezionare la posizione.

11. Il campo USB Key Drive Letter (Lettera unità chiave USB) mostra la lettera di unità per la chiave USB (F:).

Se la lettera di unità non è presente, selezionare Rescan Target (Nuova scansione destinazione), quindi selezionare la lettera di unità.

12. Fare clic su Next (Avanti).

La chiave USB viene sovrascritta con l'immagine ISO di HP SSA offline.

14. Fare clic su Finish (Fine).

Installazione dell'immagine su un server PXE

Per installare l'immagine ISO di HP SSA offline su un server PXE e avviarla dall'immagine su una rete, usare le seguenti procedure:

1. Rivedere i prerequisiti.

2. Impostare PXELinux (Impostazione di PXELinux a pagina 10).
3. Configurare PXELinux (Configurazione di PXELinux a pagina 10).

4. Specificare il percorso dell'immagine ISO (Specificazione del percorso dell'immagine ISO a pagina 11).

In base alla configurazione di rete, i tempi di avvio possono variare.

Impostazione di PXELinux

Prima di procedere con la configurazione, assicurarsi che il server TFTP e la configurazione di PXELinux siano impostati e configurati correttamente. Per impostare PXELinux:

2. Copiare l'immagine ISO nel file system di rete e annotare la posizione. Le condivisioni file NFS e Windows sono supportate.

 In questo esempio usare il seguente NFS e percorso all'immagine ISO:

 192.168.0.99:/path/to/ahpssacd/image/hpssaoffline-8.75-12.0.iso

3. Prima di procedere, verificare che il file system di rete sia accessibile.

4. Accedere alla /directory di sistema del CD in uno dei modi seguenti:
 - Masterizzare e attivare l'immagine ISO.
 - Estrarre l'immagine ISO usando uno strumento di terze parti.

5. Copiare tutti i file dalla /directory di sistema del CD al server TFTP in modo che sia accessibile al software TFTP.

Configurazione di PXELinux

1. Utilizzando come guida il file isolinux.cfg della directory /system/ del CD, copiare i target contrassegnati nel file di configurazione PXELinux. Il file intero non è necessario:

 label sos
 MENU LABEL HP ProLiant Offline HP SSA Image
 kernel hpboot_v.c32
 append vmlinuz initrd=initrd.img media=cdrom rw root=/dev/ram0
 ramdisk_size=257144 init=/bin/init loglevel=3 ide=nodma ide=noraid
 pnpbios=off vga=791 splash=silent showopts TYPE=AUTOMATIC

 label vsos
 MENU LABEL HP ProLiant Offline HP SSA Image
 kernel hpboot_v.c32
 append vmlinuz initrd=initrd.img media=cdrom rw root=/dev/ram0
 ramdisk_size=257144 init=/bin/init loglevel=3 ide=nodma ide=noraid
 pnpbios=off vga=791 splash=silent showopts TYPE=MANUAL

2. Sostituire le righe kernel hpboot_v.c32 con kernel vmlinuz.

3. Rimuovere vmlinuz dalla riga aggiunta.

 I percorsi dei file nel server TFTP sono vmlinuz e initrd.img. È necessario modificarli per includere le directory o eventuali convenzioni di denominazione sul server TFTP.
Specificazione del percorso dell'immagine ISO

Affinché il server con avvio PXE trovi l'immagine ISO è necessario aggiungerne il relativo percorso alla riga aggiunta nel file di configurazione PXELinux.

Aggiungere i seguenti argomenti:

iso1=nfs://192.168.0.99/path/to/hpssacd/image/hpssaoffline-8.75-12.0.iso
iso1mnt=/mnt/bootdevice

Il parametro iso1 consente al CD offline di HP SSA avviato tramite PXE di localizzare l'immagine ISO. Il parametro iso1mnt indica al CD di HP SSA avviato tramite PXE la posizione in cui è necessario attivare l'immagine iso1.

La configurazione finale deve essere simile all'esempio seguente:

label sos

MENU LABEL HP ProLiant Offline HPS SA Image

kernel vmlinuz

append initrd=initrd.img media=cdrom rw root=/dev/ram0
ramdisk_size=257144 init=/bin/init loglevel=3 ide=nodma ide=noraid
pnpbios=off vga=791 splash=silent showopts TYPE=AUTOMATIC iso1=nfs://
192.168.0.99/path/to/hpssacd/image/hpssaoffline-8.75-12.0.iso iso1mnt=/
mnt/bootdevice

label vsos

MENU LABEL HP ProLiant Offline HP SSA Image

kernel vmlinuz

append initrd=initrd.img media=cdrom rw root=/dev/ram0
ramdisk_size=257144 init=/bin/init loglevel=3 ide=nodma ide=noraid
pnpbios=off vga=791 splash=silent showopts TYPE=MANUAL iso1=nfs://
192.168.0.99/path/to/hpssacd/image/hpssaoffline-8.75-12.0.iso iso1mnt=/
mnt/bootdevice

È possibile aggiungere altre immagini ISO specificando gli argomenti aggiuntivi iso# e iso#mnt, ad esempio, iso2=/path/to/iso2.iso iso2mnt=/mnt/iso2.

File system di rete supportati

Per l'utilizzo con l'avvio PXE sono supportati i seguenti file system di rete:

- NFS:

 iso1=nfs://192.168.0.99/path/to/hpssacd/image/hpssaoffline-8.75-12.0.iso iso1mnt=/mnt/bootdevice

 I volumi NFS sono installati con le seguenti opzioni:

 -o ro
 nolock

- Sistemi operativi Windows:

 iso1=smbfs://192.168.0.99/share/path/to/hpssacd/image/hpssaoffline-8.75-12.0.iso iso1mnt=/mnt/bootdevice

- Sistemi operativi Windows con credenziali di accesso:
Accesso ad HP SSA in ambiente online

Per accedere, installare e avviare HP SSA in ambiente online è necessario scaricare gli eseguibili di HP SSA. Ognuno dei tre formati dispone di un file eseguibile diverso.

Scripting di HP SSA è un'applicazione autonoma distribuita con l'applicazione CLI di HP SSA.

Gli utenti che hanno già familiarità con lo scripting di ACU devono ora installare l'applicazione CLI di HP SSA per ottenere il file eseguibile di scripting. Questo nuovo file, denominato hpssascripting, sostituisce quello precedente (hpacuscripting) in tutti gli script.

Per informazioni sulle impostazioni minime del monitor e i numeri di versione di sistemi operativi e browser supportati, vedere il file README.txt fornito con l'eseguibile.

Per utilizzare HP SSA in ambiente online:

1. I file eseguibili sono scaricabili:
 - Dal sito Web HP (http://www.hp.com/go/hpssa)
 Immettere il nome del modello del server o server blade appropriato quando vengono richieste le informazioni di prodotto.
 - Dal CD del software fornito con il controller

2. Seguire le istruzioni di installazione fornito con il file eseguibile.

3. Dopo l'installazione degli eseguibili, avviarli singolarmente come segue:
 - GUI: fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator.
 In base allo scenario di configurazione, scegliere una delle seguenti opzioni:
 - Avvio di HP SSA in un server locale (Avvio di HP SSA in un server locale a pagina 12)
 - Avvio di HP SSA su un server locale per configurare un server remoto (Avvio di HP SSA in un server locale per configurare un server remoto a pagina 13)
 - Avvio di HP SSA in un server remoto per configurare un server locale (Avvio di HP SSA in un server remoto per configurare un server locale a pagina 15)
 - CLI: fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator CLI.
 - Scripting: eseguire hpssascripting.exe.

Avvio di HP SSA in un server locale

Sistema operativo Microsoft

1. Fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator.
Viene visualizzata la schermata Execution Mode (Modalità di esecuzione).

◦ Se è selezionata Local Application Mode (Modalità applicazione locale), proseguire con il passo 2.
◦ Se è selezionata Remote Service Mode (Modalità servizio remoto), selezionare Local Application Mode (Modalità applicazione locale), riavviare il server e proseguire con il passo 2.

2. Fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator.

HP SSA può avviarsi in un browser (versioni precedenti) o in una finestra di applicazione (v8.70 e successive); quindi HP SSA effettua la scansione del sistema e rileva i controller. Questo processo può richiedere fino a 2 minuti. Una volta completato il rilevamento dei controller, questi sono disponibili nel menu Controller/Device (Controller/Dispositivo).

3. Configurare un controller (Configurazione di un controller a pagina 25).

Una volta completata la configurazione, andare al passo successivo.

4. Se è stata impostata la modalità Local Application (Applicazione locale) al passo 1, e si è terminata la configurazione degli array su questo server, procedere come descritto di seguito:
 a. Fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator.
 b. Quando viene visualizzata la schermata Execution Mode (Modalità di esecuzione), selezionare Remote Service Mode (Modalità servizio remoto).
 c. Riavviare il server.

5. (Facoltativo) Per fare in modo che le unità logiche appena create siano disponibili per l'archiviazione di dati, usare gli strumenti di gestione dei dischi del sistema operativo per creare partizioni e formattare le unità disco.

Sistema operativo Linux

1. Dal prompt dei comandi, immettere uno dei seguenti:
 ◦ Per la modalità locale, immettere: cpqhpssaxe-nosmh
 ◦ Per la modalità remota, immettere: cpqhpssaxe-R

 HP SSA si avvia in un browser (Mozilla Firefox).

2. Per un elenco di opzioni, immettere quanto segue:
 cpqhpssaxe-h

Avvio di HP SSA in un server locale per configurare un server remoto

1. Sul server locale (host), fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator.
Viene visualizzata la schermata **Execution Mode** (Modalità di esecuzione).

- Se è selezionata **Remote Service Mode** (Modalità servizio remoto), proseguire con il passo 2.
- Se è selezionata **Local Application Mode** (Modalità applicazione locale), selezionare **Remote Service Mode** (Modalità servizio remoto), riavviare il server e proseguire con il passo 2.

2. Sul server remoto aprire il browser.

3. Immettere il testo seguente nel campo con l'indirizzo del browser remoto, dove *servername* (nome server) è il nome o l'indirizzo IP dell'host:

   ```
   http://servername:2301
   ```

 Viene visualizzata la schermata di accesso a System Management Homepage.

4. Immettere le credenziali di accesso:

 - Se si sta utilizzando la versione 7.0.0 o successive di System Management Homepage, immettere il nome utente e la password del sistema operativo in uso.
 - Se si sta utilizzando una versione precedente di System Management Homepage, immettere il nome utente e la password WBEM.

 La pagina System Management Homepage viene aperta.

 Per ulteriori informazioni su System Management Homepage, consultare il seguente materiale:

 - Pagina Web di HP System Management Homepage (http://www.hp.com/go/smh)
 - Il documento *HP System Management Homepage Installation Guide* (Guida all'installazione di HP System Management Homepage) sul sito Web di HP (http://www.hp.com/support/SMH_IG_en).

5. Fare clic su **HP Smart Storage Administrator** sul lato sinistro della schermata.

 Viene avviata l'utility HP SSA, che esegue la scansione del server remoto e rileva i controller. Questo processo può richiedere fino a 2 minuti. Una volta completato il rilevamento dei controller, questi sono disponibili nel menu **Controller/Device** (Controller/Dispositivo).

6. Configurare un controller ([Configurazione di un controller a pagina 25](#)).

 Una volta completata la configurazione, andare al passo successivo.

7. Per utilizzare HP SSA in questo server in modalità Local Application (Applicazione locale), seguire la procedura descritta:

 a. Fare clic su **Start**, quindi selezionare **Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator**.

 b. Quando viene visualizzata la schermata **Execution Mode** (Modalità di esecuzione), selezionare **Local Application Mode** (Modalità applicazione locale).

 c. Riavviare il server.

8. (Facoltativo) Per fare in modo che le unità logiche appena create siano disponibili per l'archiviazione di dati, usare gli strumenti di gestione dei dischi del sistema operativo per creare partizioni e formattare le unità disco.
Avvio di HP SSA in un server remoto per configurare un server locale

1. Sul server in cui è installata HP SSA, fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator.

Viene visualizzata la schermata Execution Mode (Modalità di esecuzione).

 ◦ Se è selezionata Remote Service Mode (Modalità servizio remoto), proseguire con il passo 2.

 ◦ Se è selezionata Local Application Mode (Modalità applicazione locale), selezionare Remote Service Mode (Modalità servizio remoto), riavviare il server e proseguire con il passo 2.

3. Scegliere Device Queries (Ricerca dispositivi).

4. In Device by Type (Dispositivo per tipo) selezionare All Servers (Tutti i server).

5. Eseguire la connessione al server che esegue HP SSA.

6. In Device Links (Collegamenti dispositivo), selezionare System Management Homepage.

 Viene visualizzata la schermata di accesso a System Management Homepage.

7. Eseguire l’accesso utilizzando le proprie credenziali:

 ◦ Se si sta utilizzando la versione 7.0.0 o successive di System Management Homepage, immettere il nome utente e la password del sistema operativo in uso.

 ◦ Se si sta utilizzando una versione precedente di System Management Homepage, immettere il nome utente e la password WBEM.

La pagina System Management Homepage viene aperta.

Per ulteriori informazioni su System Management Homepage, consultare il seguente materiale:

 ◦ Il documento HP System Management Homepage Installation Guide (Guida all'installazione di HP System Management Homepage) sul sito Web di HP (http://www.hp.com).

8. Fare clic su HP Smart Storage Administrator sul lato sinistro della schermata.

 Viene avviata l’utility HP SSA, che esegue la scansione del server remoto e rileva i controller. Questo processo può richiedere fino a 2 minuti. Una volta completato il rilevamento dei controller, questi sono disponibili nel menu Controller/Device (Controller/Dispositivo).

9. Configurare un controller (Configurazione di un controller a pagina 25).

 Una volta completata la configurazione, andare al passo successivo.
10. Per utilizzare HP SSA sul server remoto in modalità Local Application (Applicazione locale), seguire la procedura descritta:

a. Fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>Setup HP Smart Storage Administrator.

b. Quando viene visualizzata la schermata Execution Mode (Modalità di esecuzione), selezionare Local Application Mode (Modalità applicazione locale).

c. Riavviare il server.

11. (Facoltativo) Per fare in modo che le unità logiche appena create siano disponibili per l'archiviazione dei dati in un sistema operativo Windows, usare gli strumenti di gestione dei dischi del sistema operativo per creare partizioni e formatare le unità disco.

Utilizzo dell'interfaccia grafica di HP SSA

Accedere ad HP SSA con uno dei diversi metodi disponibili:

- Accesso ad HP SSA in ambiente offline (Accesso ad HP SSA in ambiente offline a pagina 7)
- Accesso ad HP SSA in ambiente online (Accesso ad HP SSA in ambiente online a pagina 12)

All'avvio della GUI di HP SSA si apre l'applicazione e HP SSA esegue la scansione del sistema e rileva i controller. Questo processo può richiedere fino a 2 minuti. Una volta completato il rilevamento dei controller, questi sono disponibili nel menu Devices/Tools (Controller/Dispositivo).

Quando la GUI è aperta, le attività sono distribuite in categorie. Per ulteriori informazioni, vedere "Spostamento all'interno della GUI" (Esplorazione dell'interfaccia utente a pagina 17).

Legenda delle icone e dei tasti

La GUI di HP SSA include diverse icone (definite anche nel file della guida) di aiuto nell'identificazione e nella risoluzione dei problemi.

<table>
<thead>
<tr>
<th>Immagine</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Critico</td>
</tr>
<tr>
<td>🚨</td>
<td>Avvertenza</td>
</tr>
<tr>
<td>📘</td>
<td>Informativa</td>
</tr>
<tr>
<td>⏳</td>
<td>In fase di trasformazione</td>
</tr>
<tr>
<td>🔄</td>
<td>Unità in pausa/offline</td>
</tr>
<tr>
<td>🌐</td>
<td>Server HP ProLiant</td>
</tr>
<tr>
<td>🟢</td>
<td>Controller array</td>
</tr>
<tr>
<td>🟢</td>
<td>Controller array (incorporato)</td>
</tr>
<tr>
<td>🟢</td>
<td>Controller array guasto</td>
</tr>
<tr>
<td>Immagine</td>
<td>Descrizione</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Controller array guasto (incorporato)</td>
</tr>
<tr>
<td></td>
<td>Array</td>
</tr>
<tr>
<td></td>
<td>Unità logica</td>
</tr>
<tr>
<td></td>
<td>Unità fisica assegnata</td>
</tr>
<tr>
<td></td>
<td>Unità fisica non assegnata</td>
</tr>
<tr>
<td></td>
<td>Unità non assegnate</td>
</tr>
<tr>
<td></td>
<td>Unità di riserva</td>
</tr>
<tr>
<td></td>
<td>Unità transitoria</td>
</tr>
<tr>
<td></td>
<td>Gestione della cache</td>
</tr>
<tr>
<td></td>
<td>Gestione delle licenze</td>
</tr>
</tbody>
</table>

Le funzioni e i tasti di scelta rapida da tastiera possono essere utilizzati per navigare o eseguire azioni nella GUI.

<table>
<thead>
<tr>
<th>Tasto</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB</td>
<td>Consente di passare attraverso le voci selezionabili di una pagina</td>
</tr>
<tr>
<td>Maiusc + Tab</td>
<td>Consente di scorrere all'indietro le voci selezionabili di una pagina</td>
</tr>
<tr>
<td>F5</td>
<td>Consente di eseguire una nuova scansione del sistema (operazione equivalente al pulsante Rescan System)</td>
</tr>
<tr>
<td>B</td>
<td>Menu principale del browser</td>
</tr>
<tr>
<td>H</td>
<td>Consente di aprire la guida di HP SSA</td>
</tr>
<tr>
<td>X</td>
<td>Consente di uscire da HP SSA</td>
</tr>
<tr>
<td>Invio</td>
<td>Consente di eseguire l'azione del collegamento o del pulsante attualmente selezionato*</td>
</tr>
<tr>
<td>Escape</td>
<td>Consente di chiudere i pop-up non relativi alle azioni*</td>
</tr>
<tr>
<td>R</td>
<td>Consente di aggiornare il controller selezionato*</td>
</tr>
</tbody>
</table>

* Tasti di scelta rapida da tastiera locale disponibili solo quando l’azione attivata dal tasto è accessibile.

Esplorazione dell'interfaccia utente

All'avvio dell'utility HP SSA, viene visualizzata la schermata di **benvenuto**.
Welcome to HP Smart Storage Administrator

The HP Smart Storage Administrator is an application that allows you to configure, diagnose and manage Smart Storage arrays attached to your server.

To begin, please select a device from the menu on the left.

What's New?

- The HP Smart Storage Administrator replaces the HP Array Configuration Utility for all configuration, diagnostics, and Smart SSD Wear Gauges functions.
- Configuration and diagnostics support for the following Smart Array controllers:
 - Smart Array P212, P210, P310, P410, P411, P7112, P7212, P912
 - HP Smart Array P222, P222, P420, P422, P422, P7212, P922

- Encryption, configuration, and diagnostics support for the following Smart Array controllers:
 - HP Smart Array P3100, P420, P420, P420, P7212, P922

- HP SSD Smart Path configuration.
Sono visibili i seguenti elementi:

- Il menu di navigazione rapida **Smart Storage Administrator** viene visualizzato nell'angolo superiore sinistro della schermata. Fare clic sulla freccia rivolta verso il basso per visualizzare i dispositivi disponibili e fare clic su un dispositivo per visualizzare altre informazioni e opzioni aggiuntive correlate. È anche possibile ritornare alla schermata **Home** di un server Web oppure scegliere **Configuration** (Configurazione) o **Diagnostics** (Diagnostica) per un dispositivo elencato. Per ulteriori informazioni, vedere "Schermata **Configure** (Configura)" (Schermata **Configure** (Configura) a pagina 20) o "Schermata **Diagnostics** (Diagnostica)" (Schermata **Diagnostics** (Diagnostica) a pagina 21).

- I **dispositivi disponibili** vengono elencati sul lato sinistro della schermata. Fare clic su un controller di array o server per visualizzare le azioni, gli avvisi e il riepilogo per tale dispositivo. È possibile puntare il mouse sugli avvisi di stato per visualizzarne i dettagli.

- **What's New? (Novità)** fornisce un riepilogo delle modifiche apportate da quando HP Array Configuration è diventata HP Smart Storage Administrator, e dalle versioni precedenti di HP SSA.

- Il pulsante **Rescan System** (Nuova scansione del sistema) è posizionato nella parte superiore destra della schermata.
 In seguito all'aggiunta o alla rimozione di dispositivi, fare clic su **Rescan System** (Nuova scansione del sistema) per aggiornare l'elenco dei dispositivi aggiornati.

- Il pulsante **Help** (Guida) è posizionato nella parte superiore destra della schermata.
 Per accedere agli argomenti della Guida, premere il tasto H o fare clic su **Help** (Guida). Per ulteriori informazioni, vedere "Guida di HP SSA" (Guida di HP SSA a pagina 22).

- Il pulsante **Exit HP SSA** (Esci da HP SSA) è posizionato nella parte superiore destra della schermata.
Schermata Configure (Configura)

Per accedere a questa schermata, fare clic su un dispositivo sotto **Configuration** (Configurazione) nel menu di navigazione rapida oppure selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

La schermata **Configure** (Configura) visualizza gli elementi della GUI dalla schermata di **benvenuto** ed elenca le azioni disponibili, i messaggi di stato, informazioni più dettagliate e un riepilogo sulla configurazione per un controller selezionato.

![Schermata Configure](image)

Quando si seleziona un controller, vengono visualizzati i seguenti elementi:

- **Devices and Tools** (Dispositivi e strumenti): questo pannello, posizionato a sinistra, visualizza i sistemi, i controller, gli array, le unità fisiche, le unità logiche e un gestore di cache e licenze.

- **Report Contents** (Contenuti rapporto): questo pannello centrale fornisce le seguenti informazioni e funzionalità:
 - Attività disponibili per il dispositivo selezionato sulla base dello stato e configurazione correnti
 - Opzioni e informazioni pertinenti all'attività una volta che questa è stata selezionata
- **System Status** (Stato del sistema): questo pannello fornisce le seguenti informazioni e funzionalità:
 - Icone di stato (critico, avviso e informazione) con il numero di singoli avvisi per ciascuna categoria
 - Un collegamento di visualizzazione di tutti i messaggi di stato che visualizza gli avvisi specifici di un dispositivo in una finestra pop-up

- **Controller Configuration Summary** (Riepilogo configurazione controller): questo pannello fornisce un riepilogo dei seguenti elementi:
 - Array di dati
 - Unità logiche di dati
 - Unità dati
 - Unità non assegnate

Per un elenco delle attività possibili disponibili nella schermata Configure (Configura), vedere "Attività di configurazione" (Attività di configurazione a pagina 22).

Schermata Diagnostics (Diagnostica)

Per accedere a questa schermata, fare clic su un dispositivo in Diagnostics (Diagnostica) nel menu di navigazione rapida oppure selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Diagnose (Esegui diagnosi) sotto le opzioni disponibili.

Dalla schermata Diagnostics è possibile eseguire uno dei seguenti rapporti:

- Rapporto di diagnostica
- Rapporto di SmartSSD Wear Gauge

Quando si seleziona uno di questi rapporti, le azioni disponibili nel pannello Actions (Azioni) includono la visualizzazione o il salvataggio del rapporto.
Per un elenco delle attività possibili disponibili nella schermata **Diagnostics** (Diagnostica), vedere "**Attività di diagnostica (Attività di diagnostica a pagina 42)**".

Guida di HP SSA

Il pulsante Help (Guida), in alto a destra, apre il file integrato della Guida di HP SSA. Oltre a fornire informazioni sulle principali schermate e schede, la Guida fornisce diversi e utili argomenti per nuovi utenti tra cui:

- **Image Legend** (Legenda immagine) - un elenco di riferimento visivo che definisce le icone e i pulsanti grafici utilizzati in HP SSA (**Legenda delle icone e dei tasti a pagina 16**)
- **Keyboard Controls** (Controlli da tastiera) - spiegazione ed elenco delle funzioni da tastiera per esplorare l'interfaccia utente (**Legenda delle icone e dei tasti a pagina 16**)
- **Keyboard Shortcuts** (Tasti di scelta rapida) - Un elenco di tasti e operazioni che eseguono all'interno dell'interfaccia utente

Per visualizzare questi e altri argomenti della Guida, premere il tasto **H** o fare clic su Help (Guida). Quando viene visualizzata la finestra Help (Guida), espandere l'argomento "Getting Started with HP SSA" (Panoramica di HP SSA).

Il glossario nella Guida di HP SSA definisce i termini standard di settore e di HP in relazione all'applicazione HP SSA.

Attività di configurazione

Dalla schermata **Configure** (Configura), è possibile eseguire attività relative a controller, array, unità fisiche e logiche.

Per determinate attività, sul controller deve essere attivato SAAP con una chiave di licenza registrata. Per ulteriori informazioni, vedere "Informazioni su SAAP" (**Informazioni su SAAP a pagina 5**).
Quando viene selezionato un controller o un dispositivo, le attività visualizzate sono un sottoinsieme del numero totale di attività possibili per l'elemento selezionato. HP SSA elenca o omette le attività sulla base del modello e della configurazione del controller.

Ad esempio, se il controller selezionato non presenta unità fisiche non assegnate, Create Array (Crea array) non figura fra le attività disponibili.

La seguente tabella elenca tutte le attività disponibili per ogni tipo di elemento.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Attività</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>Percorso I/O accelerato</td>
</tr>
<tr>
<td></td>
<td>Advanced Controller Settings* ** (Impostazioni avanzate del controller)</td>
</tr>
<tr>
<td></td>
<td>Array Accelerator Settings (Impostazione dell'acceleratore di array)</td>
</tr>
<tr>
<td></td>
<td>Clear Configuration (Cancella configurazione)</td>
</tr>
<tr>
<td></td>
<td>Controller Settings (Impostazioni del controller)</td>
</tr>
<tr>
<td></td>
<td>Create Array (Crea array)</td>
</tr>
<tr>
<td></td>
<td>Disable Standby Controller (Disabilita controller in standby)</td>
</tr>
<tr>
<td></td>
<td>Enable HP SmartCache † (Abilita HP SmartCache)</td>
</tr>
<tr>
<td></td>
<td>Manage Encryption (Gestisci crittografia)</td>
</tr>
<tr>
<td></td>
<td>Manage License Keys* (Gestisci chiavi di licenza)</td>
</tr>
<tr>
<td></td>
<td>More Information (Ulteriori informazioni)</td>
</tr>
<tr>
<td></td>
<td>Physical Drive Write Cache Settings (Impostazioni cache di scrittura unità fisica)</td>
</tr>
<tr>
<td></td>
<td>Redundancy Settings* (Impostazioni di ridondanza)</td>
</tr>
<tr>
<td></td>
<td>View Status Alerts (Visualizza avvisi di stato)</td>
</tr>
<tr>
<td>Elemento</td>
<td>Attività</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Array</td>
<td>Bypass RAID components using HP SSA Smart Path (Ignora i componenti RAID utilizzando HP SSA Smart Path)</td>
</tr>
<tr>
<td></td>
<td>Create Array (Crea array)</td>
</tr>
<tr>
<td></td>
<td>Create Logical Drive (Crea unità logica)</td>
</tr>
<tr>
<td></td>
<td>Create Split Mirror Backup (Crea backup del mirroring di suddivisione)</td>
</tr>
<tr>
<td></td>
<td>CANC</td>
</tr>
<tr>
<td></td>
<td>Expand Array (Espandi array)</td>
</tr>
<tr>
<td></td>
<td>Heal Array** (Ripara array)</td>
</tr>
<tr>
<td></td>
<td>Manage Split Mirror Backup (Gestione backup del mirroring di suddivisione)</td>
</tr>
<tr>
<td></td>
<td>More Information (Ulteriori informazioni)</td>
</tr>
<tr>
<td></td>
<td>Move Array** (Sposta array)</td>
</tr>
<tr>
<td></td>
<td>Re-Mirror Array** (Nuovo mirroring array)</td>
</tr>
<tr>
<td></td>
<td>Replace Array** (Sostituisci array)</td>
</tr>
<tr>
<td></td>
<td>Shrink Array** (Riduci array)</td>
</tr>
<tr>
<td></td>
<td>Spare Management (Gestione unità di riserva)</td>
</tr>
<tr>
<td></td>
<td>Split Mirrored Array** (Dividi array in mirroring)</td>
</tr>
<tr>
<td></td>
<td>View Status Alerts (Visualizza avvisi di stato)</td>
</tr>
<tr>
<td>Logical Drive (Unità logica)</td>
<td>Create Logical Drive (Crea unità logica)</td>
</tr>
<tr>
<td></td>
<td>CANC</td>
</tr>
<tr>
<td></td>
<td>Extend Logical Drive (Estendi unità logica)</td>
</tr>
<tr>
<td></td>
<td>Migrate RAID / Stripe Size (Migrazione RAID / Dimensione di stripe)</td>
</tr>
<tr>
<td></td>
<td>Move Logical Drive* ** (Sposta unità logica)</td>
</tr>
<tr>
<td></td>
<td>More Information (Ulteriori informazioni)</td>
</tr>
<tr>
<td></td>
<td>Re-enable Failed Logical Drive (Riabilita unità logica guasta)</td>
</tr>
<tr>
<td></td>
<td>View Status Alerts (Visualizza avvisi di stato)</td>
</tr>
<tr>
<td>Unused Space (Spazio inutilizzato)</td>
<td>Create Logical Drive (Crea unità logica)</td>
</tr>
<tr>
<td></td>
<td>More Information (Ulteriori informazioni)</td>
</tr>
<tr>
<td>Physical drive (Unità fisica)</td>
<td>Erase Drive** (Cancella unità)</td>
</tr>
<tr>
<td></td>
<td>View Status Alerts (Visualizza avvisi di stato)</td>
</tr>
<tr>
<td>Unità non assegnate</td>
<td>Create Array (Crea array)</td>
</tr>
<tr>
<td></td>
<td>More Information (Ulteriori informazioni)</td>
</tr>
</tbody>
</table>

* Questa funzione non è disponibile su tutti i modelli di controller.
** Se eseguita con un controller HP Smart Array G6 o G7, questa attività richiede una chiave di licenza SAAP registrata o un controller in cui la funzionalità SAAP è standard. Vedere "Informazioni su SAAP" (Informazioni su SAAP a pagina 5).
† Se eseguita con un controller Gen8, questa attività richiede una chiave di licenza HP SmartCache.
Configurazione di un controller

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.
 Viene visualizzato il pannello **Configure** (Configura).

 NOTA: Le schermate potrebbero contenere opzioni diverse a seconda della configurazione del server.

3. Configurare il controller. Vedere "Esecuzione di un'attività di configurazione" (Esecuzione di un'attività di configurazione a pagina 26).

4. Quando richiesto, salvare la configurazione.

5. Effettuare una delle seguenti operazioni:
 ◦ Configurare un controller aggiuntivo. Ripetere i passi da 3 a 5.
 ◦ Fare clic su **Exit HP SSA** (Esci da HP SSA).
Esecuzione di un'attività di configurazione

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

3. Selezionare un dispositivo dal menu **Devices** (Dispositivi).
 Vengono visualizzati i pannelli Actions (Azioni), Status Messages (Messaggi di stato) e Controller Configuration Summary (Riepilogo configurazione controller). Le attività elencate sono disponibili per questo dispositivo nella configurazione corrente. Per ulteriori informazioni, vedere "Attività di configurazione" (Attività di configurazione a pagina 22).

4. Fare clic su un pulsante di attività.
 Nella parte destra della schermata, al posto dell'elenco delle attività, viene visualizzato l'elenco di tutte le opzioni possibili per l'attività in questione.

5. Selezionare le impostazioni o le opzioni di configurazione per il dispositivo.

6. Utilizzare i pulsanti Next (Successivo) e Back (Precedente) per esplorare le diverse schermate di opzioni.

7. Fare clic su **Save** (Salva) o **OK**.
HP SSD Smart Path

HP SSD Smart Path abilita un percorso di dati ottimizzato nelle unità a stato solido ad alte prestazioni. Il percorso ottimizzato ignora i componenti di elaborazione RAID del controller e invia il traffico I/O direttamente alle unità.

Per abilitare o disabilitare HP SSD Smart Path:
1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).
2. Aprire il pannello Configure (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su Configure (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Configure (Configura) sotto le opzioni disponibili.
3. Selezionare un controller dal menu Devices (Dispositivi).
 Viene visualizzato il pannello Actions (Azioni).

Creare un'unità logica:
1. Fare clic su Create Array (Crea array).
2. Selezionare SAS SSD o SATA SSD per il tipo di unità.
3. Effettuare le selezioni per Internal Drive Cages (Gabbie unità interne).
4. Fare clic su Create Array (Crea array).
5. Effettuare le selezioni per **RAID Level** (Livello RAID), **Strip Size/Full Stripe Size** (Dimensione di strip/Dimensione di stripe completa), **Sectors/Track** (Settori/traccia) e **Size** (Dimensione).

6. Selezionare **Create Logical Drive** (Crea unità logica).

7. Fare clic su **Finish** (Fine).

 Per impostazione predefinita, HP SSA Smart Path è abilitato nelle unità SSD.

8. In **Configure** (Configura) > **Devices** (Dispositivi), scegliere l'array con le unità logiche appena create.
9. Per disattivare HP SSA Smart Path, fare clic su **Disable HP SSD Smart Path** (Disattiva HP SSD Smart Path).

10. Fare clic su **Save** (Salva).

Rapid Parity Initialization (Inizializzazione rapida della parità)

Quando si crea un'unità logica, è necessario inizializzare la parità utilizzando Rapid Parity Initialization.

I livelli RAID che utilizzano la parità (RAID 5, RAID 6 (ADG), RAID 50 e RAID 60) richiedono che i blocchi di parità vengano inizializzati con valori validi. I dati di parità validi sono necessari per consentire la protezione avanzata dei dati attraverso la scansione della superficie in background e le operazioni di scrittura di prestazioni superiori. Sono disponibili due metodi di inizializzazione:

- **Default** (Predefinito): i blocchi di parità vengono inizializzati in background mentre l'unità logica è accessibile al sistema operativo. Più basso è il livello di RAID, più veloce è l'inizializzazione della parità.

- **Rapid** (Rapido): consente di sovrascrivere sia i dati sia i blocchi di parità in primo piano. L'unità logica rimane invisibile e non disponibile al sistema operativo finché non viene completato il processo di inizializzazione della parità. Tutti i gruppi di parità vengono inizializzati in parallelo, ma l'operazione è più rapida per i gruppi di parità singoli (RAID 5 e RAID 6). Il livello RAID non influenza sulle prestazioni del sistema durante l'inizializzazione rapida.

L'inizializzazione rapida della parità è disponibile solo per i controller supportati e negli array composti da unità fisiche supportate.
Per selezionare il metodo di inizializzazione della parità:

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).

2. Aprire il pannello Configure (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su Configure (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Configure (Configura) sotto le opzioni disponibili.

3. Selezionare Arrays (Array) dal menu Devices (Dispositivi).
 Viene visualizzato un elenco di array.

4. Selezionare un array, quindi Create Logical Drive (Crea unità logica) dal menu Actions (Azioni).

5. Effettuare le selezioni per RAID Level, Number of Parity Groups (NPG), Strip Size/Full Strip Size, Sectors/Track, Size (Livello RAID, Numero di gruppi di parità (NPG), Dimensione di strip/Dimensione di strip completa, Settori/Traccia, Dimensione), Parity Initialization Method (Metodo di inizializzazione della parità) e Caching (Memorizzazione nella cache).

6. Fare clic su Create Logical Drive (Crea unità logica) per continuare.

Modifica della modalità di attivazione unità di riserva

La modalità di attivazione unità di riserva consente al firmware del controller di attivare un'unità di riserva in base alle seguenti condizioni:

- Quando un'unità dati riporta una condizione di guasto predittiva SMART.
- Quando un'unità dati si guasta (modalità predefinita).
In condizioni normali e per controller più datati, il firmware inizia a ricostruire un'unità di riserva soltanto quando un'unità dati si guasta. Con la modalità di attivazione in base a un segnale di previsione guasto è possibile iniziare la ricostruzione prima ancora che il guasto si verifichi, riducendo le probabilità di perdere i dati, eventualità ancora possibile nel caso in cui si guasti un'altra unità.

Per modificare la modalità di attivazione di unità di riserva:

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).

2. Aprire il pannello Configure (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su Configure (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Configure (Configura) sotto le opzioni disponibili.

3. Selezionare un controller dal menu Devices (Dispositivi).
 Viene visualizzato il pannello Actions (Azioni).

4. Nel pannello Actions (Azioni), fare clic su Modify Spare Activation Mode (Modifica modalità di attivazione delle unità di riserva).

5. Dal menu, selezionare una delle seguenti modalità:
 ◦ Failure Spare Activation (Attivazione unità di riserva in seguito a un guasto)
 ◦ Predictive Spare Activation (Attivazione unità di riserva in seguito a segnale di previsione)

6. Fare clic su Save (Salva).

Modifica della modalità di gestione delle unità di riserva

La funzione Spare Management fornisce più metodi di gestione del comportamento delle unità di riserva. È possibile scegliere una delle seguenti opzioni:

- **Dedicated** (Dedicata): quando viene sostituita, l'unità dati guasta deve essere ricostruita in base al contenuto dell'unità di riserva. In questa modalità, un'unità di riserva può essere dedicata a più array.
- **Auto-Replace Drives** (Sostituzione automatica delle unità): l'unità di riserva dell'unità dati guasta diventa automaticamente l'unità sostitutiva. Quando viene sostituita l'unità di riserva, non è necessario ricostruire l'unità dati. In questa modalità, le unità di riserva non possono essere condivise tra gli array.

Quando si assegna la modalità Auto-Replace Drives (Sostituzione automatica delle unità) a un array con un'unità RAID 0, Spare Activation Mode (Modalità attivazione unità di riserva) deve essere impostata su Predictive Spare Activation (Attivazione unità di riserva predittiva).
Per modificare la modalità di Spare Management:

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).

2. Aprire il pannello Configure (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su Configure (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Configure (Configura) sotto le opzioni disponibili.

3. Selezionare un controller dal menu Devices (Dispositivi).

4. Selezionare Create Array (Crea array) dal pannello Actions (Azioni).
 Viene visualizzata la schermata dei dettagli dell'array.

5. Selezionare un controller, un tipo di unità e le unità fisiche, quindi fare clic su Create Array (Crea array).

6. Fare clic su Manage Spare Drives (Gestisci unità di riserva).

7. Dal menu, selezionare uno dei seguenti tipi di unità di riserva:
 ◦ Dedicated Spare Drives (Unità di riserva dedicate)
 ◦ Auto-Replace Drives (Sostituzione automatica delle unità)

8. Selezionare le unità che funzioneranno come unità di riserva nell'array.
9. Fare clic su **Save** (Salva).

![HP Smart Storage Administrator](image)

10. Viene visualizzata una schermata di conferma. Fare clic su **Yes** (Sì) per continuare.

11. Fare clic su **Manage Spare Drives** (Gestisci unità di riserva) per effettuare selezioni aggiuntive oppure fare clic su **Finish** (Fine).

Gestione della cache

La memorizzazione nella cache aumenta le prestazioni del database scrivendo i dati nella memoria cache anziché direttamente nelle unità logiche. La memorizzazione nella cache può essere disattivata per riservare il modulo cache per altre unità logiche nell'array.

Per abilitare HP SmartCache:

1. Aprire HP SSA.

 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" ([Utilizzo dell'interfaccia grafica di HP SSA a pagina 16](#)).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:

 ◦ Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.

 ◦ Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

3. Selezionare **Cache Manager** (Gestione cache) dal menu **Tools** (Strumenti).
4. Fare clic su **Controller Cache** (Cache del controller) nel menu **Cache Manager** (Gestione cache).
5. Fare clic su **Caching Settings** (Impostazioni cache).

6. Selezionare una o più unità logiche per la memorizzazione nella cache.

7. Verificare le impostazioni di memorizzazione nella cache

8. Fare clic su **OK**.

Informazioni su HP SmartCache

HP SmartCache consente di utilizzare le unità a stato solido come dispositivi di memorizzazione nella cache per le unità disco rigido. È possibile accedere ai dati dall'unità a stato solido anziché dai dischi rigidi. Le principali caratteristiche di HP SmartCache sono:

- Accelerazione delle prestazioni applicative
- Diminuzione della latenza per le transazioni nelle applicazioni
- Supporto di tutti i sistemi operativi senza necessità di modifiche

Per supportare HP SmartCache, il firmware del controller Smart Array deve essere versione 3.42 o successiva.

HP SmartCache richiede una licenza HP SmartCache (http://www.hp.com/go/smartcache).

Enable HP SmartCache (Abilita HP SmartCache)

Questa opzione consente di creare un array per generare e assegnare SmartCache per accelerare le unità logiche. È necessario creare almeno un'unità logica nel controller prima di poter abilitare HP SmartCache.
Per abilitare HP SmartCache:

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (Utilizzo dell'interfaccia grafica di HP SSA a pagina 16).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 - Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 - Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

3. Selezionare **Cache Manager** (Gestione cache) dal menu **Tools** (Strumenti).

4. Fare clic su **Enable HP SmartCache** (Abilita HP SmartCache) nel menu **Actions** (Azioni).

5. Selezionare una o più unità fisiche dall'elenco di unità disponibili.

6. Selezionare un tipo di unità a stato solido.

7. Fare clic su **OK**.
 Alcune funzioni potrebbero non essere disponibili con HP SmartCache abilitata.

8. Vengono visualizzate le opzioni **Array Details** (Dettagli array), **Physical Drives** (Unità fisiche) e **Device Path** (Percorso dispositivi). Fare clic su **Create SmartCache for Logical Drive** (Crea SmartCache per l'unità logica).

9. Selezionare l'unità logica da memorizzare nella cache.
10. Selezionare la dimensione della cache. La dimensione consigliata è pari al 10% della dimensione dell’unità e il requisito minimo è che abbia almeno 1 GiB di spazio.

11. Fare clic su OK.
La SmartCache viene creata per l'unità logica.

Installazione di una chiave di licenza con HP SmartCache

È possibile utilizzare HP SSA per installare la chiave di licenza e attivare la funzionalità SAAP e HP SmartCache. Per ulteriori informazioni, vedere "Informazioni su SAAP" ([Informazioni su SAAP a pagina 5](#)).

Per installare la chiave di licenza:

1. Aprire HP SSA.
 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" ([Utilizzo dell'interfaccia grafica di HP SSA a pagina 16](#)).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

3. Nel menu **Tools** (Strumenti), fare clic su **License Manager** (Gestione licenze).

4. Sotto le azioni, fare clic su **Add License Key** (Aggiungi chiave di licenza).

5. Immettere il codice della chiave di licenza.

6. Fare clic su **Save** (Salva).
Utilizzo di array in mirroring

Una delle attività avanzate possibili con la GUI di HP SSA consiste nella suddivisione di un array con mirroring e la sua ricombinazione. Questo processo consiste nel suddividere un mirror RAID 1 o RAID 1+0 in due nuovi array identici che comprendono unità logiche RAID 0.

I requisiti di queste procedure sono i seguenti:

- La GUI di HP SSA deve essere eseguita in modalità offline.
- I modelli di controller HP Smart Array G6 e G7 devono avere una licenza SAAP valida (Informazioni su SAAP a pagina 5).
- Le configurazioni degli array in mirroring da suddividere possono essere RAID 1, RAID 1+0, RAID 1 (ADM) o RAID 10 (ADM). Gli array con altre configurazioni RAID non possono essere suddivisi.

Suddivisione di un array di mirroring

1. Eseguire la GUI di HP SSA in modalità offline. Vedere "Accesso ad HP SSA in ambiente offline" (Accesso ad HP SSA in ambiente offline a pagina 7).
2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 - Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 - Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.
3. Selezionare **Arrays** (Array) dal menu **Devices** (Dispositivi).
4. Dal menu **Arrays** (Array), selezionare l'array appropriato.
5. Selezionare **Manage Data Drives** (Gestisci unità dati) dal pannello **Actions** (Azioni).
6. In **Available Array Action(s)** (Azioni array disponibili), selezionare **Mirror Array** (Esegui mirroring dell'array).
7. Selezionare un'unità fisica.
8. Fare clic su **OK**. Vengono visualizzati i dettagli dell'array con mirroring.
9. Fare clic su **Finish** (Fine).
10. Quando HP SSA finisce di suddividere l'array, vengono visualizzate due unità logiche nel menu **Arrays** (Array):
 - Quando vengono suddivisi un array RAID 1 o RAID 1+0, si creano due unità logiche RAID 0.
 - Quando viene suddiviso un array contenente un'unità logica RAID 1 (ADM), si creano due unità logiche: una RAID 1 e una RAID 0.
 - Quando viene suddiviso un array contenente un'unità logica RAID 10 (ADM), si creano due unità logiche: una RAID 1+0 e una RAID 0.
11. Chiudere il sistema operativo.
12. Spegnere il server.
13. Con l'alimentazione spenta, rimuovere le unità fisiche che rappresentano uno dei nuovi array.
 Se non si rimuovono le unità fisiche per uno degli array, il sistema operativo non sarà in grado di
distinguire tra i due array nuovi ai riavvio del server in quanto identici.
15. Riavviare il sistema operativo.

Ricombinazione di un array di mirroring suddiviso

1. Eseguire la GUI di HP SSA in modalità offline. Vedere "Accesso ad HP SSA in ambiente offline" (Accesso ad HP SSA in ambiente offline a pagina 7).
2. Aprire il pannello Configure (Configura) eseguendo una delle seguenti operazioni:
 ◦ Scegliere un dispositivo e fare clic su Configure (Configura) nel menu di navigazione
 rapida.
 ◦ Selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Configure
 (Configura) sotto le opzioni disponibili.
3. Selezionare Arrays (Array) dal menu Devices (Dispositivi).
4. Selezionare l'array appropriato dal menu Arrays (Array).
5. Selezionare Manage Data Drives (Gestisci unità dati) dal pannello Actions (Azioni).
6. Fare clic su Manage Split Mirror Backup (Gestione backup del mirroring di suddivisione) nel
 pannello Available Tasks (Attività disponibili).
7. Selezionare l'array di cui eseguire il mirroring sull'array sorgente.
 Di solito si tratta dell'array suddiviso dall'array di mirroring originale. Tuttavia, può trattarsi di un
 altro array purché di dimensioni corrette.
8. Fare clic su OK.
9. Riavviare il sistema operativo quando HP SSA avrà terminato di eseguire di nuovo il mirroring
 dell'array.
 Il controller utilizza il processo di ricostruzione per sincronizzare le unità in mirroring. Durante il
 processo di ricostruzione, il LED sull'unità disco lampeggia. Questo può richiedere fino a 2 ore, a
 seconda delle dimensioni dell'unità disco rigido e del carico del server. Durante questo periodo è
 possibile avviare il sistema operativo ma la tolleranza agli errori dell'unità logica non sarà
 disponibile fino al termine della ricostruzione.

Creazione di un backup del mirroring di suddivisione

Questa attività suddivide un array che comprende una o più unità logiche RAID 1, RAID 1+0, RAID 1 (ADM) o RAID 10 (ADM) e crea due array: uno principale e uno di backup.
Per creare un backup del mirroring di suddivisione:

1. Eseguire la GUI di HP SSA in modalità offline. Vedere "Accesso ad HP SSA in ambiente offline" (Accesso ad HP SSA in ambiente offline a pagina 7).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 - Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 - Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

3. Selezionare **Arrays** (Array) dal menu **Devices** (Dispositivi).

4. Selezionare l'array appropriato dal menu **Arrays** (Array).

5. Fare clic su **Create Split Mirror Backup** (Crea backup del mirroring di suddivisione) nel pannello **Actions** (Azioni).

Viene visualizzata una finestra di dialogo di verifica con un messaggio.

6. Fare clic su **OK**.

7. Viene visualizzata una finestra dei dettagli. Fare clic su **Finish** (Fine).

HP SSA crea l'array secondo le seguenti regole:

- Se l'array originale contiene unità RAID 1 o RAID 1+0, l'array principale conterrà unità RAID 0.
- Se l'array originale contiene unità RAID 1 (ADM), l'array principale conterrà unità RAID 1.
- Se l'array originale contiene unità RAID 10 (ADM), l'array principale conterrà unità RAID 1+0.
- L'array di backup conterrà sempre unità logiche RAID 0.
- L'array principale è sempre accessibile al sistema operativo mentre l'array di backup risulta nascosto al sistema operativo.

8. Al termine del backup del mirroring di suddivisione con HP SSA, il nuovo array di backup è visibile nella struttura **Devices** (Dispositivi):

L'array include la designazione "Backup" all'inizio del nome di array.

Re-mirroring, roll back o riattivazione di un backup del mirroring di suddivisione

1. Eseguire la GUI di HP SSA in modalità offline. Vedere "Accesso ad HP SSA in ambiente offline" (Accesso ad HP SSA in ambiente offline a pagina 7).

2. Aprire il pannello **Configure** (Configura) eseguendo una delle seguenti operazioni:
 - Scegliere un dispositivo e fare clic su **Configure** (Configura) nel menu di navigazione rapida.
 - Selezionare un dispositivo disponibile dalla schermata **Home**, quindi fare clic su **Configure** (Configura) sotto le opzioni disponibili.

3. Selezionare **Arrays** (Array) dal menu **Devices** (Dispositivi).

4. Selezionare l'array appropriato dal menu **Arrays** (Array).
5. Fare clic su **Manage Split Mirror Backup** (Gestione backup del mirroring di suddivisione) nel pannello **Available Tasks** (Attività disponibili).

6. Selezionare una delle seguenti azioni:

- Re-mirror the array and preserve the existing data. Discard the backup array (Riesegui il mirroring dell'array e conservare i dati esistenti. Elimina l'array di backup).

 Questa opzione ricrea l'array in mirroring originale con il contenuto attuale dell'array principale.

- Re-mirror the array and roll back to the contents of the backup array. Discard existing data (Riesegui il mirroring dell'array e roll back al contenuto dell'array di backup. Elimina i dati esistenti).

 Questa opzione ricrea l'array in mirroring, ma ripristina il contenuto originale dell'array di backup. Si consiglia di non eseguire questa azione nelle seguenti condizioni:
 - In un ambiente online
 - Se l'unità logica su cui eseguire il roll back è attivata
 - Se l'unità logica su cui eseguire il roll back è utilizzata dal sistema operativo

- Activate the backup array (Attiva l'array di backup).

 Questa opzione rende completamente accessibile l'array di backup al sistema operativo. HP SSA rimuove la designazione "backup" dal nome dell'array.

Riparazione di un array

L'operazione Heal Array (Ripara array) consente di immettere un comando per sostituire unità fisiche guaste nell'array con unità fisiche funzionanti. Dopo la sostituzione, la numerazione dell'array originale e dell'unità logica non cambia.

Per usare Heal Array (Ripara array), assicurarsi che sussistano le seguenti condizioni:

- L'array contiene almeno un'unità guasta.
- L'array non è in fase di trasformazione (ad esempio, in fase di ricostruzione di un'unità di riserva).
- L'array dispone di una cache funzionante, consentendo la trasformazione.
- Le unità fisiche sostitutive e le unità originali devono avere lo stesso tipo di interfaccia, ad esempio SAS, SATA e così via.
- Un numero sufficiente di unità fisiche non assegnate della dimensione corretta deve essere disponibile per sostituire ogni unità fisica guasta nell'array.

 La dimensione corretta è definita come un'unità della stessa capacità dell'unità più piccola presente nell'array ma non più grande dell'unità di riserva più piccola.
- Se si utilizza un controller per HP ProLiant Smart Array G6 o G7, viene attivata una licenza SAAP 1.0.

Quando si seleziona Heal Array (Ripara array) e tutte le condizioni sono soddisfatte, sul volume dell'array si verifica una delle seguenti azioni:

- Se un volume è guasto, HP SSA ricrea il volume. Questa azione si verifica con un volume RAID 0.
- Se un volume è danneggiato, HP SSA ricrea il volume.
Sostituzione di un array

Alcuni controller potrebbero non supportare questa opzione o potrebbero richiedere una chiave di licenza per abilitare questa funzione.

HP SSA consente di trasferire il contenuto di un array a un array vuoto esistente o a un nuovo array. Durante questa operazione, tutte le unità logiche sono trasferite dall'array originale a quello di destinazione. L'array originale è eliminato e le unità utilizzate sono liberate ed elencate come unità non assegnate.

La sostituzione di un array è una procedura che richiede tempo per due motivi: tutti i dati di ciascuna unità logica sono copiati nell'array di destinazione e il controller esegue tutte le trasformazioni dei dati sempre gestendo le richieste IO per le altre unità logiche.

Per eseguire l'operazione Replace Array (Sostituisci array), assicurarsi che sussistano le seguenti condizioni:

- L'array di destinazione deve avere lo stesso numero di unità fisiche come l'array di origine o quello originale.
- Sia l'array di origine che di destinazione devono essere nello stato OK.
- Tutte le unità logiche esistenti nell'array di origine devono essere nello stato OK.
- L'array di destinazione deve avere una capacità sufficiente per contenere tutte le unità logiche presenti nell'array di origine.

Attività di diagnostica

La funzione HP SSA Diagnostics (Diagnostica HP SSA) sostituisce l'applicazione Array Diagnostic Utility supportata da SmartStart v8.20 e versioni precedenti.

L'utility HP SSA genera i seguenti rapporti e registri:

- Rapporto di diagnostica sull'array
 Questo rapporto contiene informazioni relative a tutti i dispositivi, ad esempio controller degli array, contenitori di memorizzazione, telai porta unità, unità logiche, fisiche e nastro. Per le unità a stato solido supportate, il rapporto contiene anche le informazioni relative all'utility SmartSSD Wear Gauge.
- Rapporto di SmartSSD Wear Gauge
 Questo rapporto contiene le informazioni relative al livello di utilizzo corrente e alla durata attesa rimanente delle unità a stato solido collegate al sistema.
- Log dell'output seriale
 Questo log informa in dettaglio sull'output seriale per il controller selezionato.

Per ogni controller o per tutti i controller, è possibile selezionare le seguenti attività:

- View Diagnostic Report (Visualizza rapporto di diagnostica)
- Save Diagnostic Report (Salva rapporto di diagnostica)
- View SmartSSD Wear Gauge Report (Visualizza rapporto SmartSSD Wear Gauge)
- Save SmartSSD Wear Gauge Report (Salva rapporto SmartSSD Wear Gauge)

Per le attività di visualizzazione, HP SSA genera e mostra il rapporto o il log. Per le attività di salvataggio, HP SSA genera un rapporto senza la visualizzazione grafica.
Per ciascuna attività è possibile salvare il rapporto. In ambiente in linea o offline, HP SSA salva il rapporto di diagnostica in una cartella compressa che contiene un rapporto in formato XML e di testo e un file di visualizzazione che consente di visualizzare ed esplorare il rapporto tramite un browser Web.

Ogni rapporto diagnostico di HP SSA contiene una vista consolidata di qualsiasi condizione di errore o avviso incontrata. Il rapporto fornisce inoltre informazioni dettagliate su tutti i dispositivi di memorizzazione, tra cui:

- Stato della periferica
- Flag di configurazione
- Versioni firmware
- Registri degli errori delle unità fisiche

La diagnostica di HP SSA non raccoglie mai informazioni sui dati contenuti nelle unità logiche. Il rapporto di diagnostica non raccoglie o include informazioni quali:

- Tipi di file system, contenuto o stato
- Tipi di partizioni, dimensione o layout
- Informazioni sul software RAID
- Nomi dei dispositivi del sistema operativo o punto di attivazione

Esecuzione di un’attività di diagnostica

1. **Aprire HP SSA.**

 Per ulteriori informazioni, vedere "Utilizzo della GUI di HP SSA" (**Utilizzo dell'interfaccia grafica di HP SSA a pagina 16**).

2. **Aprire il pannello Diagnostics (Diagnostica) eseguendo una delle seguenti operazioni:**
 - Scegliere un dispositivo e fare clic su Diagnose (Diagnosi) nel menu di navigazione rapida.
 - Selezionare un dispositivo disponibile dalla schermata Home, quindi fare clic su Diagnose (Diagnosi) sotto le opzioni disponibili.

3. **Scegliere un tipo di rapporto.**

 ![Diagnostica](image)

 In questo esempio verrà utilizzata la selezione dei rapporti di diagnostica.
4. Selezionare **Array Diagnostic Report** (Rapporto di diagnostica array). Viene visualizzato il pannello **Actions** (Azioni) per il rapporto di diagnostica array.

![Image of HP Smart Storage Administrator](image)

5. Fare clic su uno dei pulsanti di attività:
 - Il rapporto viene visualizzato se si seleziona **View Diagnostic Report** (Visualizza rapporto di diagnostica). Una volta visualizzato il rapporto corrente, fare clic su **Close** (Chiudi) o **Save** (Salva).
 - Se si seleziona **Save Diagnostic Report** (Salva rapporto di diagnostica), attendere la generazione del rapporto, quindi fare clic su **Close Report** (Chiudi rapporto) o **Save Report** (Salva rapporto).

Per maggiori informazioni sui report e la relativa visualizzazione in un browser, vedere le sezioni seguenti:

- "Informazioni contenute nei rapporti" ([Informazioni contenute nei rapporti a pagina 102](#))
- "Identificazione e visualizzazione dei file contenenti i rapporti di diagnostica" ([Identificazione e visualizzazione dei file contenenti i rapporti di diagnostica a pagina 105](#))
- "Identificazione e visualizzazione dei file contenenti i rapporti SmartSSD Wear Gauge" ([Identificazione e visualizzazione dei file contenenti i rapporti SmartSSD Wear Gauge a pagina 106](#))

Uso della CLI di HP SSA

Accedere ad HP SSA con uno dei diversi metodi disponibili:

- Accesso ad HP SSA in ambiente offline ([Accesso ad HP SSA in ambiente offline a pagina 7](#))
- Accesso ad HP SSA in ambiente online ([Accesso ad HP SSA in ambiente online a pagina 12](#))
Alcune funzionalità di HP SSA sono disponibili soltanto in un ambiente non in linea, ad esempio l'impostazione del controller di avvio e del volume di avvio.

L'interfaccia della riga di comando di HP SSA offre due modalità operative:

- Modalità Console ([Apertura della CLI in modalità Console a pagina 45])

 È possibile regolare vari parametri di configurazione in diversi dispositivi senza dover riavviare HP SSA dopo ogni modifica.

- Modalità Command (Comando) ([Apertura della CLI in modalità Command a pagina 45])

 È possibile apportare una modifica isolata a un solo parametro di configurazione su un dispositivo.

Per VMware ESXi 5.0, la CLI di HP SSA funziona in modo simile alla modalità Command (Comando) menzionata. Sono tuttavia presenti alcune differenze che richiedono di eseguire la CLI di HP SSA tramite l'utility da riga di comando esxcli di VMware vSphere. Per ulteriori informazioni sull'utilizzo della CLI di HP SSA per ESXi 5.0, vedere il file README.txt fornito con l'eseguibile.

Per ulteriori formazioni sull'utilizzo della CLI di HP SSA per Linux, vedere i seguenti file README.txt:

- HP SSA: /opt/hp/hpssa/README.TXT
- HPSSACLI (32 bit): /opt/hp/hpssaci/bld/hpssaci-1.50-2.0.i386.txt
- HPSSACLI (64 bit): /opt/hp/hpssaci/bld/hpssaci-1.50-2.0.x86_64.txt

Apertura della CLI in modalità Console

La sintassi del comando necessario per aprire la CLI di HP SSA in modalità Console dipende dal sistema operativo utilizzato.

- In Microsoft Windows, immettere quanto segue:

 C:\Programmi\hp\hpssaci\Bin\hpssaci.exe

 In alternativa, fare clic su Start, quindi selezionare Programmi>HP System Tools>HP Smart Storage Administrator>HP Smart Storage Administrator CLI.

- In Linux immettere quanto segue:

 [root@localhost root]# hpssaci

Dopo l'avvio della modalità Console in uno dei due sistemi operativi, vengono visualizzati il messaggio e il prompt della console seguenti:

HP Smart Storage Administrator CLI 1.50.2.0

Detecting Controllers...Done.

Type "help" for a list of supported commands.

Type "exit" to close the console.

=>

I restanti esempi riportati nella sezione della CLI di HP SSA di questa guida sono basati sull'utilizzo della modalità Console.

Apertura della CLI in modalità Command

Per utilizzare la modalità Command (Comando), identificare il comando della CLI di HP SSA appropriato ([La variabile <command> a pagina 46]). Aggiungere quindi il comando alla fine della
riga di testo utilizzata per l'apertura della CLI in modalità Console (Apertura della CLI in modalità Console a pagina 45).

Negli esempi seguenti viene utilizzato il comando help:

- Con Microsoft Windows:
  ```
  C:\Programmi\hp\Hpssacli\Bin\hpssacli.exe help
  ```

- In Linux:
  ```
  [root@localhost root]# hpssacli help
  ```

I restanti esempi riportati nella sezione della CLI di HP SSA di questa guida sono basati sull'utilizzo della modalità Console.

Sintassi CLI

A prescindere dalla modalità di immissione, Command o Console, una riga di comando HP SSA tipica consiste di tre parti: un dispositivo di destinazione, un comando e un parametro con valori se necessario. Di seguito viene riportata la struttura di una tipica riga di comando della CLI di HP SSA dove i caratteri maggiore e minore indicano una variabile obbligatoria e le parentesi quadre indicano una variabile opzionale:

```
<target> <command> [parameter=value]
```

La variabile <target>

Questa variabile fornisce il percorso del dispositivo da configurare. Il dispositivo può essere un controller, un array, un'unità logica oppure un'unità fisica. La sintassi utilizzata è la seguente:

```
controller all | slot=# | wwn=# | chassisname="AAA" | serialnumber=# | chassisserialnumber=# | [array=all|<id>] [logicaldrive all|#]
[physicaldrive all|allunassigned|[#:]:,[#:]:,[#:]:...|[#:]:-[#:]:]#
```

Ad esempio:

controller slot=3
controller wwn=500805F3000BAC11
controller slot=2 array A
controller chassisname="A" array B logicaldrive 2
controller chassisname="A" physicaldrive 1:0
controller all
controller slot=2 array all
controller slot=3 physicaldrive 1:2-1:5

La variabile <command>

La variabile <command> può corrispondere a una delle seguenti parole o frasi che identificano le tipiche attività di configurazione:

- add
- create
- delete
modify
remove
set target

Sono inoltre disponibili comandi di non configurazione:
diag (Generazione di un rapporto di diagnostica a pagina 55)
help (Comando help a pagina 51)
rescan (Riscansione del sistema a pagina 56)
shorthand (Abbreviazioni delle parole chiave a pagina 48)
show (Comando show a pagina 48)
version (Visualizzazione delle versioni in uso dei livelli dell'applicazione a pagina 51)

Un comando spesso richiede un parametro e alcuni parametri richiedono un valore. Tuttavia, gli specifici parametri e valori validi per un determinato comando dipendono dal target a cui verrà applicato il comando.

Per determinare i parametri e i valori validi per una determinata combinazione di target e variabili di comando, è possibile interrogare il dispositivo (Interrogazione di un dispositivo a pagina 47). È inoltre possibile esaminare i comandi di esempio in altre sezioni della presente guida.

Interrogazione di un dispositivo

Non conoscendo quali siano i valori da assegnare ad un parametro, alle volte è possibile interrogare il dispositivo inserendo un ? come valore del parametro.

Comando di esempio:
=> ctrl ch="Lab4" ld l modify raid=0 ss=?

In questo caso, una tipica risposta potrebbe essere:

Available options are:
8
16 (current value)
32
64
128 (default)
256

Per determinare i parametri che è possibile interrogare, utilizzare il comando help della CLI (Comando help a pagina 51).

Come nascondere i messaggi di avviso

Dopo l'inserimento di un comando che potrebbe provocare la distruzione di dati, nell'interfaccia CLI viene visualizzato un messaggio di avviso con la richiesta di un intervento da parte dell'utente (y o n) prima di continuare. Questa situazione non è desiderabile durante l'esecuzione degli script batch. Per evitare la visualizzazione dei messaggi di avviso, usare il parametro forced.

Comando di esempio:
In VMware ESXi 5.0, il flag forced è richiesto per qualsiasi comando che dispone di un'opzione per un flag forced. Se il parametro forced non è utilizzato, il sistema genera un messaggio di errore che notifica che il comando non può essere completato senza questo flag.

Abbreviazioni delle parole chiave

Diverse parole chiave di utilizzo comune nella CLI di HP SSA hanno abbreviazioni accettabili, come riportato nella seguente tabella. Per visualizzare un elenco completo delle abbreviazioni, immettere help shorthand nella CLIC di HP SSA.

<table>
<thead>
<tr>
<th>Parola chiave</th>
<th>Abbreviazione in HP SSA CLI</th>
<th>Parola chiave</th>
<th>Abbreviazione in HP SSA CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>adapterid</td>
<td>ai</td>
<td>nobatterywritecache</td>
<td>nbwc</td>
</tr>
<tr>
<td>allunassigned</td>
<td>all</td>
<td>numberparitygroups</td>
<td>npg</td>
</tr>
<tr>
<td>arrayaccelerator</td>
<td>aa</td>
<td>parallelscsi</td>
<td>ps</td>
</tr>
<tr>
<td>cacheratio</td>
<td>cr</td>
<td>physicaldrive</td>
<td>pd</td>
</tr>
<tr>
<td>chassisname*</td>
<td>ch*</td>
<td>postprompttimeout</td>
<td>ppto</td>
</tr>
<tr>
<td>chassisserialnumber</td>
<td>csn</td>
<td>preferredpathmode</td>
<td>ppm</td>
</tr>
<tr>
<td>chassisslot</td>
<td>chs</td>
<td>queuedepth</td>
<td>qd</td>
</tr>
<tr>
<td>configurationmode</td>
<td>cm</td>
<td>raid1writebuffering</td>
<td>r1wb</td>
</tr>
<tr>
<td>connectionname</td>
<td>cn</td>
<td>rebuildpriority</td>
<td>rp</td>
</tr>
<tr>
<td>Controller</td>
<td>ctrl</td>
<td>redundantcontroller</td>
<td>rc</td>
</tr>
<tr>
<td>ctrlpath</td>
<td>cp</td>
<td>serialnumber</td>
<td>sn</td>
</tr>
<tr>
<td>degradedperformancemode</td>
<td>dpo</td>
<td>spareactivationmode</td>
<td>sam</td>
</tr>
<tr>
<td>drivetype</td>
<td>dt</td>
<td>ssdphysicaldrive</td>
<td>ssdp</td>
</tr>
<tr>
<td>drivewritecache</td>
<td>dwc</td>
<td>stripesize</td>
<td>ss</td>
</tr>
<tr>
<td>elevatorsort</td>
<td>es</td>
<td>surfaceanalyseseventnotify</td>
<td>saen</td>
</tr>
<tr>
<td>Contenitore</td>
<td>enc</td>
<td>surfacescandelay</td>
<td>ssd</td>
</tr>
<tr>
<td>exitonerror</td>
<td>eoe</td>
<td>surfacescanmode</td>
<td>ssm</td>
</tr>
<tr>
<td>expandpriority</td>
<td>ep</td>
<td>surfacescanschedule</td>
<td>sss</td>
</tr>
<tr>
<td>inconsistenceypairpolicy</td>
<td>irp</td>
<td>sufacescanschedule</td>
<td>sss</td>
</tr>
<tr>
<td>licensekey</td>
<td>lk</td>
<td>tapedrive</td>
<td>td</td>
</tr>
<tr>
<td>logicaldrive</td>
<td>ld</td>
<td>waitforcacheroom</td>
<td>wfcr</td>
</tr>
<tr>
<td>mnpdelay</td>
<td>mnpd</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* La CLI usa questa parola chiave ed abbreviazione per i termini **box name e RAID array ID**.

Comando show

Il comando show consente di ottenere informazioni su un dispositivo.
Sintassi:

<target> show [detail]|[status]

Quando si specifica un target corrispondente a diversi dispositivi, le informazioni restituite sono in genere meno complete di quelle visualizzate per un target comprendente un unico dispositivo. In questo caso, è comunque possibile utilizzare il parametro [detail] per ottenere la stessa quantità di informazioni restituita per un target con un singolo dispositivo.

È disponibile un parametro aggiuntivo per i target relativi al controller: config. Questo parametro viene utilizzato nel modo seguente:

<target controller> show config [detail]

Il parametro config restituisce informazioni su ciascun dispositivo collegato al controller.

Esempio 1:

=> ctrl slot=9 show

Un output tipico può essere:

Smart Array P421 in Slot 9
Bus Interface: PCI
Slot: 9
Serial Number: PBKTV0XTAZZ005
RAID 6 (ADG) Status: Enabled
Controller Status: OK
Hardware Revision: A
Firmware Version: 0.02-106
Rebuild Priority: Medium
Expand Priority: Medium
Surface Scan Delay: 3 secs
Surface Scan Mode: Idle
Queue Depth: Automatic
Monitor and Performance Delay: 60 min
Elevator Sort: Enabled
Degraded Performance Optimization: Disabled
Inconsistency Repair Policy: Disabled
Wait for Cache Room: Disabled
Surface Analysis Inconsistency Notification: Disabled
Post Prompt Timeout: 15 secs
Cache Board Present: True
Cache Status: OK
Accelerator Ratio: 10% Read / 90% Write
Drive Write Cache: Disabled
Total Cache Size: 1024 MB
Total Cache Memory Available: 816 MB
No-Battery Write Cache: Disabled
Cache Backup Power Source: Capacitors
Battery/Capacitor Count: 1
Battery/Capacitor Status: OK
SATA NCQ Supported: True
Spare Activation Mode: Activate on drive failure
Controller Temperature (C): 40
Cache Module Temperature (C): 0
Capacitor Temperature (C): 0
Boot Controller: True
Primary Boot Volume: logicaldrive 1
Secondary Boot Volume: logicaldrive 1

Esempio 2:
=> ctrl all show
Poiché questo target comprende diversi dispositivi, l'output restituito sarà breve. Un output tipico può essere:

MSA1000 at dog (sn: P56350D9IP903J, csn: (9J3CJN71XDCH, wwn: 500805F3000BAC11)
Smart Array 5312 in Slot 3 (sn: P4AB5X9BFLMNTJ)
Smart Array 532 in Slot 2 (sn: P44940LDAORS4F)

Esempio 3:
=> ctrl ch="lab4" show config
In questo caso l'output conterrà informazioni dettagliate, poiché il target comprende un unico dispositivo. Un output tipico può essere:

MSA1000 at dog (sn: P56350D9IP903J, csn: (9J3CJN71XDCH, wwn: 500805F3000BAC11)
array A (SAS, Unused Space: 20091 MB)
logicaldrive 1 (219 MB, RAID 6(ADG), OK)
physicaldrive 1:1:3 (port 1:box 1:bay 3, SAS, 4.3 GB, OK)
physicaldrive 1:1:4 (port 1:box 1:bay 4, SAS, 9.1 GB, OK)
physicaldrive 1:1:5 (port 1:box 1:bay 5, SAS, 9.1 GB, OK)
physicaldrive 1:1:6 (port 1:box 1:bay 6, SAS, 9.1 GB, OK)
physicaldrive 1:1:7 (port 1:box 1:bay 7, SAS, 9.1 GB, OK)
physicaldrive 1:1:9 (port 1:box 1:bay 9, SAS, ??? GB, failed, spare)
unassigned
drive 1:1:1 (port 1:box 1:bay 1, SAS, 36 GB, OK)
physicaldrive 1:1:2 (port 1:box 1:bay 2, SAS, 36 GB, OK)
physicaldrive 1:1:8 (port 1:box 1:bay 8, SAS, 9.1 GB, OK)
physicaldrive 1:1:10 (port 1:box 1:bay 10, SAS, 9.1 GB, OK)
physicaldrive 1:1:11 (port 1:box 1:bay 11, SAS, 9.1 GB, OK)

Visualizzazione delle versioni in uso dei livelli dell’applicazione

Il comando `version` consente di visualizzare le versioni in uso dell’applicazione e di altri livelli software.

Sintassi:

`version`

Comando di esempio:

`version`

Un output tipico può essere:

HP SSA CLI Version: 1.50.2.0
SoulAPI Version: 7.0.27.0
InfoManager Version: 7.0-14.0

Comando help

Per visualizzare la guida nell'interfaccia CLI, immettere il comando `help` al prompt della CLI, quindi immettere uno o più parametri nel modo seguente:

`=> help <item1> [item2] [item3]`

Il parametro item può corrispondere a uno dei seguenti elementi:

- Un comando CLI ([La variabile `<command>` a pagina 46])
- Una parola chiave, o un'abbreviazione, della CLI di HP SSA ([Abbreviazioni delle parole chiave a pagina 48])
- Un parametro della CLI
- Un termine comunemente utilizzato in HP SSA, quale "migrate", "extend" o "cache"
- Il termine shorthand (per visualizzare un elenco delle abbreviazioni utilizzate per le parole chiave nella CLI)

La guida della CLI di HP SSA funziona in modo analogo ai motori di ricerca dei browser in cui a un numero maggiore di termini nella stringa di ricerca corrisponde un output di minore lunghezza. Ad esempio, specificando `help controller` vengono restituite informazioni dettagliate, mentre con `help controller remove` vengono restituite le informazioni solo sul modo in cui il comando remove si applica ai controller.
Procedure tipiche

Le seguenti sezioni illustrano alcune procedure comuni della CLI di HP SSA.

Impostazione del controller di avvio

La procedura è disponibile soltanto in ambiente offline.

Il controller di avvio è il primo controller esaminato dal sistema (dopo l'accensione) per trovare un'unità logica o un volume avviabile. Per funzionare correttamente, il controller di avvio deve disporre di un volume di avvio predeterminato. Vedere "Impostazione del volume di avvio" (Impostazione del volume di avvio a pagina 52).

Sintassi:

<target> modify [bootcontroller=enable|disable]

Dove <target> è un controller con un volume impostabile come volume di avvio.

Comando di esempio:

controller slot=1 modify bootcontroller=enable

Impostazione del volume di avvio

La procedura è disponibile soltanto in ambiente offline.

Il volume di avvio è il volume che contiene il sistema operativo e i relativi file di supporto. Per funzionare correttamente, il controller di avvio deve essere accessibile da parte del controller di avvio predeterminato. Vedere "Impostazione del controller di avvio" (Impostazione del controller di avvio a pagina 52).

Sintassi:

<target> modify [bootvolume=primary|secondary|none]

dove <target> è un controller e un'unità logica.

Comandi di esempio:

controller slot=1 ld 1 modify bootvolume=primary
controller slot=1 ld 2 modify bootvolume=secondary
controller slot=1 ld 1 modify bootvolume=none

Impostazione del target

Se occorre eseguire diverse operazioni su un dato dispositivo target, è possibile semplificare i comandi richiesti impostando il dispositivo come <target> predefinito per tutte le operazioni della CLI.

Dopo aver impostato il target, tutti i comandi inseriti nella CLI senza precisare un <target> verranno applicati automaticamente al target impostato. L'esecuzione di operazioni anche su altri dispositivi è sempre possibile indicando il <target> per ciascuna di tali operazioni nel modo consueto. È possibile inoltre modificare il target impostato o annullarlo completamente. Il target impostato viene annullato automaticamente quando si chiude la CLI.

NOTA: Non è possibile usare il comando set target in file di script batch.

Sintassi:
set target <target>

Dove <target> è un controller, un array o un'unità logica.

Comandi di esempio:

=> set target ctrl slot=3
=> clear target

Scenario tipico

Innanzitutto, impostare un target nel seguente modo:

=> set target ctrl ch="Lab 4"
=> show target

controller chassisname="Lab 4"

Come esempio di funzionamento dei comandi set target (impostazione target) verificare lo stato dell'array A su questo controller.

=> array A show
(MSA1000 at Lab 4)
array A
Interface Type: Parallel SCSI
Unused Space: 7949 MB
Status: OK

Notare che non occorre indicare il controller in quanto è già stato impostato come target.

Ora annullare il target, reimpostarlo ed inserire alcuni comandi per il nuovo target impostato:

=> clear target
=> set target ctrl slot=3
=> array A add drives=1:7,1:8,1:9
=> array B add spares=1:10,1:11
=> ctrl slot=4 ld 3 modify ss=64
=> modify rp=high

Questa sequenza comprende un comando per un target diverso (il controller nello slot 4) a titolo di dimostrazione. Notare che il comando successivo nella sequenza (quello per modificare la priorità di ricreazione) viene applicato al controller nello slot 3, non a quello nello slot 4. Ciò avviene perché il comando non specifica un <target> per la priorità di ricreazione e viene piuttosto utilizzato il target impostato in modo predefinito.

Impostazione del target

Se occorre eseguire diverse operazioni su un dato dispositivo target, è possibile semplificare i comandi richiesti impostando il dispositivo come <target> predefinito per tutte le operazioni della CLI.

Dopo aver impostato il target, tutti i comandi inseriti nella CLI senza precisare un <target> verranno applicati automaticamente al target impostato. L'esecuzione di operazioni anche su altri dispositivi è
sempre possibile indicando il \texttt{<target>} per ciascuna di tali operazioni nel modo consueto. È possibile inoltre modificare il target impostato o annullarlo completamente. Il target impostato viene annullato automaticamente quando si chiude la CLI.

\textbf{NOTA:} Non è possibile usare il comando \texttt{set target} in file di script batch.

\textbf{Sintassi:}
\begin{verbatim}
set target \texttt{<target>}
\end{verbatim}

\textsl{Dove} \texttt{<target>} è un controller, un array o un'unità logica.

\textbf{Comandi di esempio:}
\begin{verbatim}
=> set target ctrl slot=3
=> clear target
\end{verbatim}

\textbf{Scenario tipico}

Innanzitutto, impostare un target nel seguente modo:
\begin{verbatim}
=> set target ctrl ch="Lab 4"
=> show target
c\texttt{ontroller chassisname="Lab 4"}
\end{verbatim}

Come esempio di funzionamento dei comandi set target (impostazione target) verificare lo stato dell'array A su questo controller.

\begin{verbatim}
=> array A show
(MSA1000 at Lab 4)
array A
Interface Type: SAS
Unused Space: 7949 MB
Status: OK
\end{verbatim}

\textbf{Non è necessario specificare il controller in quanto è già impostato come target.}

Ora annullare il target, reimpostarlo ed inserire alcuni comandi per il nuovo target impostato:
\begin{verbatim}
=> clear target
=> set target ctrl slot=3
=> array A add drives=1:7,1:8,1:9
=> array B add spares=1:10,1:11
=> ctrl slot=4 ld 3 modify ss=64
=> modify rp=high
\end{verbatim}

Questa sequenza comprende un comando per un target diverso (il controller nello slot 4) a titolo di dimostrazione. Il comando successivo nella sequenza (quello per modificare la priorità di ricreazione) viene applicato al controller nello slot 3, non a quello nello slot 4. Ciò avviene perché il comando non specifica un \texttt{<target>} per la priorità di ricreazione e viene piuttosto utilizzato il target impostato in modo predefinito.
Identificazione dei dispositivi

È possibile inserire un comando che provoca il lampeggiamento di tutti i LED sui dispositivi target, consentendone l'identificazione. Dopo un'ora, i LED smettono di lampeggiare. È inoltre possibile interrompere il lampeggiamento dei LED inserendo il comando off.

Sintassi:
<target> modify led=on|off

Comandi di esempio:
=> ctrl ch="Lab 4" modify led=on
=> ctrl ch="Lab 4" array A modify led=off

Eliminazione dei dispositivi target

Sintassi:
<target> delete [forced]

Dove <target> può essere un controller, un array o un'unità logica. Tranne nel caso dei controller, è possibile eliminare contemporaneamente diversi dispositivi di tipo simile servendosi della parola chiave all.

Poiché l'eliminazione di un dispositivo può produrre la perdita di dati, viene visualizzato un messaggio di avviso se non si aggiunge il parametro forced.

Comandi di esempio:
=> ctrl ch="Lab 4" delete forced
=> ctrl slot=3 ld all delete

Generazione di un rapporto di diagnostica

HP rende disponibili agli amministratori diversi modi per generare le informazioni sulla diagnostica, compresi tutti e tre i formati di HP SSA e l'applicazione standalone da riga di comando di HP Smart Storage Administrator (CLI dell'utility di diagnostica HP Smart Storage Administrator a pagina 102).

Nella CLI di HP SSA, il comando diag genera informazioni diagnostiche relative a uno specifico controller o a tutti i controller del sistema. L'opzione ssdrpt genera il rapporto Smart SSD Wear Gauge.

Sintassi:
<target> diag <file=filename> [ris=on|off] [ssdrpt=on|off] [xml=on|off] [zip=on|off]

Dove vengono assegnati i seguenti parametri:
● <target> rappresenta un controller o tutti i controller.
● <file=filename> rappresenta il file di destinazione in cui vengono salvate le informazioni di diagnostica.
● [ris=on|off] determina se includere o meno le informazioni RIS. Il valore off viene fornito per retrocompatibilità e quindi ignorato.
● [ssdrpt=on|off] specifica se viene generato o meno il rapporto Smart SSD Wear Gauge. Il valore predefinito è off.
- [xml=on|off] genera informazioni di diagnostica in XML formatato. Il valore off viene fornito per retrocompatibilità e quindi ignorato.
- [zip=on|off] comprime il file generato in un file zip. Per impostazione predefinita, la compressione è disabilitata. Il valore off viene fornito per retrocompatibilità e quindi ignorato.

Comandi di esempio:

```
ctrl all diag file=c:\allcontrollers.zip
ctrl slot=4 diag file=c:\ctrl_slot4.zip
ctrl ch="mybox" diag file=mybox.zip ssdrpt=on
```

Cancellazione di un'unità fisica

Sintassi:

```
<target> modify [erase erasepattern=zero|random_zero|random_random_zero]
```

Dove il target può essere una qualunque unità fisica valida.

Per interrompere in qualsiasi momento un processo di cancellazione, immettere il comando `stoperase`.

Comandi di esempio:

```
=> ctrl slot=3 ld 2 modify erase erasepattern=zero
=> ctrl slot=4 ld all modify erase erasepattern=random_zero
=> ctrl slot=3 ld 2 modify stoperase
```

Riscansione del sistema

Una riscansione identifica i dispositivi aggiunti al sistema dalla riscansione precedente o dall'avvio della CLI di HP SSA, a seconda di quale operazione sia la più recente.

Sintassi:

Usare il comando `rescan` direttamente alla richiesta della CLI di HP SSA, senza dispositivi target o parametri.

Comando di esempio:

```
=> rescan
```

Immissione o eliminazione di una chiave di licenza

Alcune attività avanzate di configurazione, disponibili solo con determinati modelli di controller, possono essere eseguite solo dopo l'installazione del software sul controller e la registrazione della chiave di licenza necessaria per attivare il software.

Sintassi:

```
<target> add [lk=xxxxx-xxxxx-xxxxx-xxxxx-xxxxx]
```

Dove target rappresenta un controller valido. I trattini sono facoltativi.

Per eliminare una chiave di licenza, utilizzare un comando `delete` standard e utilizzare la chiave di licenza come target e non il controller.

```
<target> delete
```
Ottimizzazione delle prestazioni del controller per il video

Determinati modelli di controller consentono di ottimizzare le prestazioni per il video.

Per utilizzare queste funzioni in un controller HP Smart Array G6 o G7, è necessaria una chiave di licenza SAAP registrata (Informazioni su SAAP a pagina 5).

Sintassi:

<target> modify dpo=enable elevatorsort=disable irp=enable queuedepth=automatic mnpd=60

Dove target rappresenta un controller valido.

Il parametro queuedepth può assumere un valore numerico compreso tra 2 e 32 e il parametro mnpd può assumere un valore qualsiasi compreso tra 0 (disabilitato) a 60.

Per disabilitare la funzione di ottimizzazione delle prestazioni video, utilizzare il valore disable invece del valore enable, impostare il parametro queuedepth su automatic e impostare il parametro mnpd su 0 come illustrato nel secondo comando di esempio.

Ottimizzazioni di esempio:

=> ctrl slot=5 1k=12345-65432-78787-43434-24680 delete
=> ctrl slot=4 add 1k=9876543210222224444466666

Creazione di un'unità logica

Sintassi:

<target> create type=ld [parameter=value]

Dove <target> è in genere un controller ma può essere anche un array se viene creata un'unità logica aggiuntiva in un array esistente.

Se si desidera creare un'unità logica in un gruppo di unità fisiche non ancora assegnate a un array, non è necessario creare prima l'array. A differenza della GUI, nella CLI l'array viene creato automaticamente al momento della creazione dell'unità logica.

Nella tabella seguente sono riportati i parametri standard utilizzati per la creazione di un'unità logica. Se non viene specificato un determinato parametro, verrà utilizzato il valore predefinito appropriato.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valori accettabili</th>
<th>Commenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unità</td>
<td>[#:]:#:#,[#:]:#:#,...</td>
<td>[#:]:#:#</td>
</tr>
<tr>
<td>raid</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Se si specifica un array come target, è possibile omettere il parametro `drives` poiché le unità sono già definite implicitamente dall'ID dell'array. Questa funzionalità risulta particolarmente utile quando si immette il comando direttamente nella console della CLI in quanto elimina la necessità di ricordare quali sono le unità che appartengono all'array. Quando si scrive un file batch, tuttavia, risulta spesso più semplice specificare le singole unità nell'array anziché utilizzare l'analisi dell'ID dell'array.

Quando si utilizza il parametro `drives`, è possibile elencare singolarmente tutte le unità, specificare un intervallo di unità o specificare un intervallo e alcune singole unità. Nell'intervallo è possibile specificare porte, contenitori e alloggiamenti. Nel caso di singole unità, non è necessario specificare unità in sequenza. Nel caso di un intervallo, la CLI esclude automaticamente dal target qualsiasi unità non disponibile inclusa nell'intervallo. Vengono ad esempio escluse unità già appartenenti a un array, unità di riserva, unità con capacità troppo ridotta o unità malfunzionanti.

Se si desidera specificare un array esistente tramite le relative unità anziché l'ID, è necessario specificare tutte le unità appartenenti allo stesso array senza escludere alcuna unità.

Comandi di esempio:

```bash
ctrl slot=5 create type=ld drives=1:0,1:1,1:3 raid=adg
ctrl slot=5 create type=ld drives=1:1-1:3 raid=adg
ctrl slot=5 create type=ld drives=1:7,1:10-2:5,2:8-2:12 raid=adg
ctrl slot=5 array A create type=ld size=330 raid=adg
```

Nei due comandi seguenti il parametro `drives` viene utilizzato in un file batch per creare due unità logiche sullo stesso array, una da 330 MB e l'altra da 450 MB:

```bash
ctrl slot=2 create type=ld drives=1:1-1:6 size=330 raid=adg
ctrl slot=2 create type=ld drives=1:1-1:6 size=450 raid=5
```

Scenario di esempio

Si consideri una situazione in cui si desidera creare due array. Uno di questi array richiede due unità logiche, mentre l'altro una sola.

Innanzitutto occorre determinare le unità fisiche disponibili e le relative proprietà
Per questo scenario, la risposta visualizzata sullo schermo è:

(MSA1000 at Lab 4)
unassigned

physicaldrive 1:1:12 (port 1:box 1:bay12, SAS, 36.4 GB, OK)
physicaldrive 1:1:13 (port 1:box 1:bay13, SAS, 9.1 GB, OK)
physicaldrive 1:1:14 (port 1:box 1:bay14, SAS, 9.1 GB, OK)

Conoscendo questi dati è possibile creare il primo array con un'unità logica:

=> ctrl ch="Lab 4" create type=ld drives=1:12

Adesso occorre verificare che l'array sia stato effettivamente creato:

=> ctrl ch="Lab 4" pd all show

In questo caso, la risposta visualizzata sullo schermo è:

(MSA1000 at Lab 4)
array A
physicaldrive 1:1:12 (port 1:box 1:bay12, Parallel SCSI, 36.4 GB, OK)
unassigned
physicaldrive 1:1:13 (port 1:box 1:bay13, Parallel SCSI, 9.1 GB, OK)
physicaldrive 1:1:14 (port 1:box 1:bay14, Parallel SCSI, 9.1 GB, OK)

Creare il secondo array nelle due unità fisiche rimanenti. Prima di creare questo array, determinare le opzioni RAID disponibili per queste unità:

=> ctrl ch="Lab 4" create type=ld drives=1:13,1:14 size=300 raid=?

In questo caso, la risposta è:

Available options are:

0
1+0 (default value)

Creare quindi il nuovo array:

=> ctrl ch="Lab 4" create type=ld drives=1:13,1:14 size=300 raid=1+0

In questo esempio non è strettamente necessario specificare il livello RAID in quanto per impostazione predefinita sarà il livello più alto possibile per questo scenario. Tuttavia viene incluso nel comando a titolo di esempio.

Adesso occorre verificare che l'array sia stato effettivamente creato:

=> ctrl ch="Lab 4" pd all show

Segue la risposta visualizzata sullo schermo:

(MSA1000 at Lab 4)
array A
physicaldrive 1:1:12 (port 1:box 1:bay12, SAS, 36.4 GB, OK)
array B

physicaldrive 1:1:13 (port 1:box 1:bay13, SAS, 9.1 GB, OK)

physicaldrive 1:1:14 (port 1:box 1:bay14, SAS, 9.1 GB, OK)

Per creare una seconda unità logica sull'array B, è possibile specificare l'array (metodo A) oppure specificare ogni unità fisica nell'array (metodo B).

=> ctrl ch="Lab 4" array B create type=ld size=900 (metodo A)

=> ctrl ch="Lab 4" create type=ld drives=1:13,1:14 size=900 (metodo B)

Infine verificare che le tutte le unità logiche siano state create correttamente:

=> ctrl ch="Lab 4" ld all show

(MSA1000 at Lab 4)

array A

logicaldrive 1 (33.9 GB, RAID 0, OK)

array B

logicaldrive 2 (298 MB, RAID 1+0, OK)

logicaldrive 3 (896 MB, RAID 1+0, OK)

Spostamento di un'unità logica

HP SSA consente di spostare una singola unità logica da un array a un altro. Questa funzione è disponibile nei controller HP Smart Array Gen8.

Quando si sposta l'unità logica è possibile scegliere una delle seguenti destinazioni:

● Un array esistente
● Un nuovo array creato dall'utente

Per spostare un'unità logica in un array esistente, utilizzare le seguenti informazioni.

Sintassi:
<target> modify [newarray=]

Esempi di comandi:

ctrl slot=1 ld 3 modify newarray=C

ctrl slot=1 ld 3 modify newarray=? // shows the available arrays

Per spostare un'unità logica e creare un nuovo array, utilizzare le seguenti informazioni.

Sintassi:
<target> modify [drives=[#:]#:#,[#:]#:#,[#:]#:#-[#:]#:#,...]

Esempi di comandi:

ctrl slot=1 ld 3 modify drives=2e:1:1-2e:1:4

ctrl slot=1 ld 3 modify drives=? // shows the available drives

È possibile utilizzare il parametro drivetype per specificare il tipo di interfaccia dell'unità. Quando si selezionano tutte le unità fisiche e sussistono diversi tipi di unità, occorre specificare il tipo di
interfaccia dell'unità stessa. Sullo stesso array o sulle unità logiche non sono consentite unità miste. Se tutte le unità su un controller sono dello stesso tipo, questo parametro non è necessario.

Per **drivetype**, utilizzare una delle seguenti opzioni valide:

```
[drivetype=sas | satalogical | sata | saslogical | parallelscsi | ss_sas | ss_sata | ?]
```

Esempi di comandi:

controller slot=5 ld 1 modify drives=? drivetype=sas
controller slot=5 array A modify drives=? drivetype=ss_sas

Visualizzazione delle informazioni sui contenitori

La parola chiave **enclosure** è un target valido per il comando **show** e genera le informazioni sul contenitore di memorizzazione.

Sintassi:

```
enclosure [ all | port:box | serialnumber=xxx ] show [ detail | status ]
```

Dove il target può essere un qualunque controller di memorizzazione valido.

Comandi di esempio:

controller slot=5 enclosure all show
controller slot=5 enclosure 4E:1 show detail
controller slot=5 enclosure serialnumber=UAB123456 show status

Visualizzazione di unità fisiche per un HBA

La parola chiave **nonsa** mostra le unità fisiche dietro a un HBA o a un "array non-smart".

Sintassi:

```
<target> nonsa show [ssdinfo]
```

Esempi di comandi:

controller nonsa show
controller nonsa show ssdinfo

Visualizzazione delle unità fisiche SSD

La parola chiave **ssdphysicaldrive** è un target valido per il comando **show** e genera le informazioni sulle unità fisiche allo stato solido poste su un controller specificato.

Sintassi:

```
<target> ssdpd all show [detail]
```

Dove **target** rappresenta un controller valido.

Comandi di esempio:

controller slot=5 ssdpd all show
controller slot=5 ssdpd all show detail
Visualizzazione delle informazioni sulle unità SSD

La parola chiave `ssdinfo` fornisce un riepilogo per le unità allo stato solido per il controller specificato.

Sintassi:

```
<target> show ssdinfo [detail | summary]
```

Esempi di comandi:

```
controller slot=1 show ssdinfo
controller all show ssdinfo
controller all show ssdinfo detail
controller all show ssdinfo summary
```

SmartCache in HPSSAACLl

HP SmartCache consente di creare un'unità logica cache in un'unità fisica a stato solido per essere associata a un'unità logica di dati esistente e aumentare le prestazioni.

Esempi di comandi:

Per creare un nuovo array SmartCache per l'unità logica di dati 1 esistente utilizzando l'unità a stato solido 1e:1:10:

```
=> ctrl slot=1 create type=ldcache drives=1e:1:10 datald=1
```

Il comando riportato sopra crea un nuovo array SmartCache, ad esempio "array B." Solo un array SmartCache può esistere in un controller. In questo esempio viene creata un'unità logica cache aggiuntiva utilizzando l'array SmartCache esistente per l'unità logica di dati 2 esistente:

```
=> ctrl slot=1 array B create type=ldcache datald=2
```

Metodi di Rapid Parity Initialization (Inizializzazione rapida della parità)

I livelli RAID che utilizzano la parità (RAID 5, RAID 6 (ADG), RAID 50 e RAID 60) richiedono che i blocchi di parità vengano inizializzati con valori validi. I dati di parità validi sono necessari per consentire la protezione avanzata dei dati attraverso la scansione della superficie in background e le operazioni di scrittura di prestazioni superiori. Sono disponibili due metodi di inizializzazione:

- **Default** (Predefinito): i blocchi di parità vengono inizializzati in background mentre l'unità logica è accessibile al sistema operativo. Più basso è il livello di RAID, più veloce è l'inizializzazione della parità.

- **Rapid** (Rapido): consente di sovrascrivere sia i dati sia i blocchi di parità in primo piano. L'unità logica rimane invisibile e non disponibile al sistema operativo finché non viene completato il processo di inizializzazione della parità. Tutti i gruppi di parità vengono inizializzati in parallelo, ma l'operazione è più rapida per i gruppi di parità singoli (RAID 5 e RAID 6). Il livello RAID non influenza sulle prestazioni del sistema durante l'inizializzazione rapida.

L'inizializzazione rapida della parità è disponibile solo per i controller supportati e negli array composti da unità fisiche supportate.

Esempio di creazione di un'unità logica con Rapid Parity Initialization (Inizializzazione rapida della parità):

```
=> ctrl slot=3 create type=ld drives=1e:1:1-1e:1:4
parityinitializationmethod=rapid
```
Assegnazione di un nome di telaio al controller

Se un controller è stato configurato con almeno una unità logica, è possibile assegnare un nome semplificato (il nome del telaio) per facilitare l'identificazione e l'inserimento del controller corretto in un comando.

Sintassi:

```
<target> modify ch="new chassis name"
```

dove `<target>` rappresenta un controller. Se si modifica il nome del telaio di un controller impostato come target predefinito (Impostazione del target (Impostazione del target a pagina 52)), Impostazione del target (Impostazione del target a pagina 53)), è necessario impostare nuovamente il target.

Comandi di esempio:

=> ctrl sn=P56350D9IP903J modify ch="Lab 6"
=> ctrl ch="Lab 4" modify ch="Lab 6"

Gestione delle unità di riserva

L'assegnazione a un array di una o più unità di riserva in linea consente di posticipare la sostituzione delle unità malfunzionanti. Tuttavia non aumenta la tolleranza agli errori delle unità logiche dell'array. Ad esempio, un'unità logica in una configurazione RAID 5 subisce un'irrimediabile perdita di dati se due unità fisiche si guastano contemporaneamente, indipendentemente dal numero delle unità di riserva assegnate all'array.

Per utilizzarle come unità di riserva, è necessario che vengano soddisfatte le seguenti condizioni:

- L'unità deve essere un'unità non assegnata o un'unità di riserva per un altro array.
- L'unità deve essere dello stesso tipo di quelle esistenti nell'array (ad esempio, tutte SATA o SAS).
- L'unità deve avere una capacità non inferiore a quella dell'unità più piccola dell'array.

Sintassi:

```
<target> add spares=[#:]:#, [#:]:#, [#:]:#, [#:]:#-[#:]:#,...|allunassigned [forced]
```

```
<target> remove spares=[#:]:#, [#:]:#, [#:]:#, [#:]:#-[#:]:#,...|all
```

Dove `<target>` è un array (o un'unità logica, se l'array contiene una sola unità logica). Il parametro `forced` blocca la visualizzazione di qualsiasi messaggio di avviso. Se viene specificato un intervallo di unità, tutte le unità incluse nell'intervallo che non soddisfano i criteri sopra elencati non verranno utilizzate.

Comandi di esempio:

=> ctrl slot=3 array B add spares=1:6
=> ctrl slot=4 array all add spares=1:5,1:7
=> ctrl slot=5 array A add spares=1:1-1:5
=> ctrl slot=5 array A remove spares=1:1-1:5
Impostazione della modalità di attivazione unità di riserva

La modalità di attivazione unità di riserva consente al firmware del controller di attivare un'unità di riserva in base alle seguenti condizioni:

- Quando un'unità dati riporta una condizione di guasto predittiva SMART.
- Quando un'unità dati si guasta (modalità predefinita).

In condizioni normali e per controller più datati, il firmware inizia a ricostruire un'unità di riserva soltanto quando un'unità dati si guasta. Con la modalità di attivazione in base a un segnale di previsione guasto è possibile iniziare la ricostruzione prima ancora che il guasto si verifichi, riducendo le probabilità di perdere i dati, eventualità ancora possibile nel caso in cui si guasti un'altra unità.

Usare la parola chiave `spareactivationmode` per passare l’attivazione delle unità di riserva a livello di controller da modalità guasto unità a modalità avviso di previsione guasto.

Sintassi:

```plaintext
<target> modify spareactivationmode=[ failure | predictive ]
```

Comandi di esempio:

```plaintext
controller slot=1 modify spareactivationmode=predictive
controller slot=1 modify spareactivationmode=failure
```

Modalità di gestione delle unità di riserva in HPSSACL

La parola chiave `sparetype` consente di specificare il tipo di unità di riserva come "dedicata" (impostazione predefinita) o "sostituzione automatica". Un'unità di riserva dedicata sostituisce temporaneamente un'unità guasta e può essere condivisa tra array. Un'unità di riserva impostata sulla modalità sostituzione automatica sostituisce un'unità guasta e non può essere condivisa tra gli array.

Comando di esempio:

Per aggiungere un'unità di riserva con il tipo di modalità sostituzione automatica:

```plaintext
=> ctrl slot=1 array A add spares=1e:1:5 sparetype=autoreplace
```

Espansione di un array

È possibile aumentare lo spazio di memorizzazione su un array aggiungendo unità fisiche. Le unità aggiunte devono soddisfare le seguenti condizioni:

- L'unità deve essere un'unità non assegnata.
- L'unità deve essere dello stesso tipo di quelle esistenti nell'array (ad esempio, tutte SATA o SAS).
- L'unità deve avere una capacità non inferiore a quella dell'unità più piccola dell'array.

NOTA: L'espansione di un array, l'estensione o la migrazione di un'unità logica richiede circa 15 minuti per GB. Durante questo processo non è possibile eseguire simultaneamente altre operazioni di espansione, estensione o migrazione sullo stesso controller. I controller che non supportano una cache di scrittura con alimentazione a batteria, non supportano questo processo.

Sintassi:

```plaintext
<target> add drives=[:]:#:#,[#]:#,#,[#]:#,#-[:]:#:#,...|allunassigned [forced]
```
Dove `<target>` è un array (o un'unità logica, se l'array contiene una sola unità logica). Il parametro `forced` blocca la visualizzazione di qualsiasi messaggio di avviso. Se viene specificato un intervallo di unità, tutte le unità incluse nell'intervallo che non soddisfano i criteri sopra elencati non verranno utilizzate.

Se si aggiunge un numero di unità dispari a un array contenente un'unità logica RAID 1+0, verrà chiesto di convertire tale unità in un'unità RAID 5 o RAID 6 (ADG). L'aggiunta del parametro `forced` al comando evita la visualizzazione del messaggio.

Comandi di esempio:

```plaintext
=> ctrl slot=3 array A add drives=1:0,1:1
=> ctrl slot=4 ld 1 add drives=allunassigned
=> ctrl slot=5 array A add drives=1:1-1:5
```

Riduzione di un array

Alcuni controller potrebbero non supportare questa opzione o potrebbero richiedere una chiave di licenza per abilitare questa funzione.

È possibile ridurre le dimensioni di un array rimuovendo un'unità da un array esistente. Attenersi ai seguenti criteri:

- Dopo la riduzione, l'array deve avere una capacità sufficiente a contenere tutti i volumi logici configurati.
- Non è possibile rimuovere unità dall'array se il numero risultante di unità non supporta la tolleranza agli errori (livello RAID) di qualsiasi unità logica esistente. Ad esempio, in un array con quattro unità fisiche e un'unità logica RAID 5, è possibile rimuovere al massimo un'unità, in quanto RAID 5 richiede almeno tre unità fisiche.
- Se l'array contiene un'unità logica RAID 1+0, è possibile rimuovere un numero pari di unità.
- Se l'array contiene un'unità logica RAID composta (RAID 50 o RAID 60), è possibile rimuovere un numero di unità multiplo rispetto al numero di gruppi di parità. Ad esempio, un array con 10 unità fisiche e un'unità logica RAID 50 può essere ridotto solo rimuovendo due o quattro unità.

Sintassi:

```plaintext
<target> remove drives=[#:][#:]-[#:][#:]
```

Dove `<target>` è un array e le unità fisiche specificate vengono rimosse per ridurre l'array.

Ad esempio, se in un array esistente (array a) sono presenti sei unità (1e:1:4-1e:1:9). Per soddisfare tutti i criteri, è possibile ridurre l'array a quattro unità rimuovendo le ultime due unità con il comando:

```plaintext
<array a> remove drives=1e:1:8-1e:1:9
```

Comandi di esempio:

```plaintext
=> array a remove drives=1e:1:12-1e:1:14
=> array b remove drives=1c:1:6-1c:1:7
```

Spostamento di un array

Alcuni controller potrebbero non supportare questa opzione o potrebbero richiedere una chiave di licenza per abilitare questa funzione.
È possibile spostare un array indicando per esso unità fisiche diverse. Per spostare l'array, ogni unità fisica su cui risiederà l'array deve soddisfare i seguenti criteri:

- L'unità deve essere un'unità non assegnata.
- L'unità deve essere dello stesso tipo delle unità fisiche correntemente nell'array sorgente (ad esempio, tutte SATA o SAS).
- Le unità di destinazione devono avere una capacità sufficiente per contenere tutte le unità logiche presenti nell'array.

Come per la creazione ed espansione di array, lo spazio utilizzabile in tutte le unità è ridotto alle dimensioni dell'unità fisica più piccola nel gruppo di unità.

Lo spostamento automatico dell'array rimuove qualsiasi unità di riserva precedentemente assegnata. Se le unità di riserva sono assegnate all'array esistente, devono essere assegnate all'array quando questo viene spostato.

Sintassi:

```
<target> modify drives=[#:][:]:-[#:][:]:# spares=[#:][:]:-[#:][:]:#
```

Dove `<target>` è un array e le unità fisiche specificate sono la nuova destinazione dell'array.

Comandi di esempio:

```
=> array a modify drives=1e:1:12-1e:1:14 spares=1e:1:9
=> array b modify drives=1c:1:6-1c:1:7
```

Sostituzione di un array

Alcuni controller potrebbero non supportare questa opzione o potrebbero richiedere una chiave di licenza per abilitare questa funzione.

È possibile sostituire un array indicando per esso unità fisiche diverse. Per sostituire l'array, ogni unità fisica su cui risiederà l'array deve soddisfare i seguenti criteri:

- Le unità di destinazione devono essere dello stesso tipo (ad esempio SATA o SAS) ma non del tipo uguale a quelle dell'array sorgente.
- Un'unità di destinazione non deve avere un'unità non assegnata e comunque l'assegnazione deve essere effettuata sull'array da sostituire.
- Le unità di destinazione devono avere una capacità sufficiente per contenere tutte le unità logiche presenti nell'array.

Come per la creazione ed espansione di array, lo spazio utilizzabile in tutte le unità è ridotto alle dimensioni dell'unità fisica più piccola nel gruppo di unità.

La sostituzione automatica di un array rimuove qualsiasi unità di riserva precedentemente assegnata. Se le unità di riserva sono assegnate all'array esistente, devono essere assegnate all'array quando questo viene spostato.

Sintassi:

```
<target> modify drives=[#:][:]:-[#:][:]:# spares=[#:][:]:-[#:][:]:#
```
Dove `<target>` è un array e le unità fisiche specificate sono la nuova destinazione dell'array.

Comandi di esempio:

```plaintext
=> array a modify drives=1e:1:12-1e:1:14 spares=1e:1:9
=> array b modify drives=1c:1:6-1c:1:7
```

Estensione di un'unità logica

Se il sistema operativo supporta l'estensione delle unità logiche, è possibile utilizzare qualsiasi capacità non assegnata su un array per ingrandire una o più unità logiche presenti sull'array.

NOTA: L'estensione di un array, l'estensione o la migrazione di un'unità logica richiede circa 15 minuti per GB. Durante questo processo non è possibile eseguire simultaneamente altre operazioni di espansione, estensione o migrazione sullo stesso controller. I controller che non supportano una cache di scrittura con alimentazione a batteria, non supportano questo processo.

Sintassi:

```plaintext
<target> modify size=#|max|? [forced]
```

Dove `<target>` rappresenta un'unità logica.

Se il sistema operativo non supporta l'estensione delle unità logiche, l'esecuzione di questo comando rende non disponibili tutti i dati sull'unità logica. Pertanto la CLI visualizza un messaggio di avviso come precauzione nel caso si utilizzi un tale sistema operativo. Per impedire la visualizzazione del messaggio, utilizzare il parametro `forced`.

Comandi di esempio:

```plaintext
=> ctrl slot=3 ld 1 modify size=max
=> ctrl slot=4 ld 1 modify size=?
=> ctrl slot=3 ld 2 modify size=500 forced
```

Migrazione di un'unità logica

Questo comando consente di modificare la dimensione di stripe (dimensione dei blocchi di dati) o del livello RAID di un'unità logica selezionata. Per ulteriori informazioni, vedere "Selezione di un metodo RAID" ([Selezione di un metodo RAID a pagina 118](#)).

Prima di eseguire una migrazione vanno considerati tutti i seguenti fattori:

- Per alcune migrazioni di livello RAID, potrebbe essere necessario aggiungere una o più unità all'array.
- Per la migrazione a dimensioni di stripe maggiori, l'array potrebbe dover contenere dello spazio inutilizzato. Questo spazio addizionale è necessario in quanto le maggiori dimensioni degli stripe nell'array migrato rendono meno efficiente il relativo riempimento.
NOTA: L'espansione di un array, l'estensione o la migrazione di un'unità logica richiede circa 15 minuti per GB. Durante questo processo non è possibile eseguire simultaneamente altre operazioni di espansione, estensione o migrazione sullo stesso controller. I controller che non supportano una cache di scrittura con alimentazione a batteria, non supportano questo processo.

Sintassi:

```
<target> modify [raid=0|1+0|1|5|6|adg|?] [ss=8|16|32|64|128|256|default|?]
```

Dove `<target>` rappresenta un'unità logica.

A questo comando si applicano le seguenti limitazioni:

- Non è possibile eseguire simultaneamente le interrogazioni per il livello RAID e le dimensioni di stripe di una data unità logica.
- Se non si specifica un livello RAID per una interrogazione o una migrazione, la CLI usa il valore predefinito esistente.
- Se non si indica una dimensione di stripe, la CLI usa le dimensioni stripe predefinite per il livello di RAID specificato.

Comandi di esempio:

```
=> ctrl slot=3 ld 1 modify raid=1
=> ctrl slot=4 ld 2 modify ss=16
=> ctrl slot=2 ld 3 modify raid=5 ss=16
```

Impostazione della modalità di selezione del percorso preferito

La modalità di selezione del percorso preferito consente di determinare il modo in cui il traffico di I/O all'unità logica viene gestito sui controller con configurazione Active/Active (Attivo/Attivo).

- In modalità Automatic (Automatica) il sistema di memorizzazione seleziona automaticamente un percorso valido per indirizzare il traffico di I/O alle diverse unità logiche in base agli schemi di I/O dell'host definiti. Poiché il percorso ottimale può variare, il traffico di I/O a una determinata unità logica può essere indirizzato mediante uno dei controller disponibili.
- In modalità Manual (Manuale), l'intero traffico di I/O a una determinata unità logica viene indirizzato tramite il controller designato. In tal caso, è necessario specificare anche il controller preferito per ciascuna unità logica (**Assegnazione di un controller ridondante a un'unità logica** a pagina 68).

Sintassi:

```
<target> modify [preferredpathmode=automatic|manual|?] 
```

dove `<target>` rappresenta un controller ridondante.

Comando di esempio:

```
controller ch="lab 3" modify ppm=manual 
```

Assegnazione di un controller ridondante a un'unità logica

Quando in un sistema ridondante si imposta la modalità di percorso preferito (**Impostazione della modalità di selezione del percorso preferito a pagina 68**) su Manual (Manuale), è necessario utilizzare il comando `chassisslot` per assegnare tutte le unità logiche del sistema a uno dei controller ridondanti.
Sintassi:

<target> modify [chassisslot=#|?]

dove <target> rappresenta un'unità logica valida su un controller in configurazione Active/Active (Attivo/Attivo) e # indica il numero dello slot del telaio del controller ridondante. Per determinare il numero di slot del telaio, utilizzare il comando show sul controller.

Comando di esempio:

controller ch="lab 3" ld 1 modify chs=2

Disabilitazione di un controller ridondante

Questo comando consente di disabilitare un controller ridondante in una configurazione Active-Standby.

Nota: Il controller ridondante non può essere riattivato dopo essere stato disabilitato.

Sintassi:

<target> modify redundantcontroller=disable

dove <target> è un controller su cui è presente un controller ridondante attivato.

Comando di esempio:

=> ctrl ch="redundant Lab4" modify rc=disable

Modifica dell'impostazione della priorità di ricostruzione

L'impostazione relativa alla priorità di ricostruzione determina l'urgenza con cui il controller gestisce un comando interno di ricostruzione dell'unità logica guasta.

- Con l'impostazione bassa, le normali operazioni di sistema hanno precedenza sulla ricostruzione.
- Se si sceglie un'impostazione di priorità media, la ricostruzione occupa la metà del tempo disponibile totale e le normali operazioni di sistema occupano il tempo rimanente.
- Se si sceglie l'impostazione di priorità alta, la ricostruzione ha la precedenza su tutte le altre operazioni di sistema.

Se l'unità logica fa parte di un array con un'unità di riserva in linea, la ricostruzione inizia automaticamente all'atto del guasto. Se l'array non ha un'unità di riserva in linea, la ricostruzione inizia all'atto della sostituzione dell'unità fisica guasta.

Sintassi:

<target> modify rp=high|medium|low|?

dove <target> rappresenta un controller.

Comando di esempio:

=> ctrl slot=3 modify rp=high
Modifica dell'impostazione della priorità di espansione

L'impostazione relativa alla priorità di espansione determina l'urgenza con cui il controller gestisce un comando interno di espansione dell'array.

- Con l'impostazione bassa, le normali operazioni di sistema hanno precedenza sull'espansione di un array.
- Se si sceglie un'impostazione di priorità media, l'espansione occupa la metà del tempo disponibile totale e le normali operazioni di sistema occupano il tempo rimanente.
- Se si sceglie l'impostazione di priorità alta, l'espansione ha la precedenza su tutte le altre operazioni di sistema.

Sintassi:

```
<target> modify ep=high|medium|low|?
```

dove `<target>` rappresenta un controller.

Comando di esempio:

```
=> ctrl slot=3 modify ep=high
```

Impostazione della modalità scansione di superficie

La parola chiave `surfacescanmode` imposta la modalità di scansione superficie del controller. Le modalità disponibili sono disable, high o idle. Se viene scelta la modalità idle, è necessario specificare un valore di ritardo per la scansione di superficie.

Sintassi:

```
<target> modify [ surfacescanmode=disable | idle | high | ? ]
```

Comandi di esempio:

```
controller slot=1 modify surfacescanmode=high
controller slot=1 modify surfacescanmode=disable
controller slot=1 modify surfacescanmode=idle surfacescandelay=3
```

Modifica del ritardo di scansione della superficie

L'impostazione relativa al ritardo di scansione della superficie determina l'intervallo di tempo durante il quale il controller deve rimanere inattivo prima dell'avvio di un'analisi di superficie sulle unità fisiche collegate al controller.

La scansione di superficie è una procedura di analisi automatica che si svolge dietro le quinte per assicurare che il recupero dei dati sia possibile nel caso di un guasto ad un'unità. La scansione esamina le unità fisiche nelle unità logiche con tolleranza agli errori alla ricerca di settori guasti e nelle configurazioni RAID 5 o RAID 6 (ADG), verifica inoltre la congruenza dei dati di parità.

Sintassi:

```
<target> modify ssd=#
```

dove `<target>` è un controller e `#` è un numero compreso tra 1 e 30. Questo numero determina il tempo di ritardo in secondi, ma non è necessario includere le unità con il comando.

Comando di esempio:

```
=> ctrl sn=P56350D9IP903J modify ssd=3
```
Riabilitazione di un'unità logica guasta

Se un'unità logica si è guastata con dati ormai non validi o irrecuperabili, è possibile riabilitare l'unità logica affinché possa essere riutilizzata. Questa procedura conserva la struttura dell'unità logica e cancella semplicemente i dati, mentre il comando delete applicato a un'unità logica cancella la struttura dell'unità oltre ai dati.

Sintassi:
<target> modify reenable [forced]

Comando di esempio:
=> ctrl slot=3 ld 1 modify reenable forced

Modifica del rapporto cache dei controller

L'impostazione del rapporto cache dei controller determina la quantità di memoria assegnata alle operazioni di lettura e scrittura. A tipi differenti di applicazioni corrispondono impostazioni ottimali differenti. È possibile modificare il rapporto solo se il controller è dotato di una cache alimentata a batteria (in quanto per le operazioni di scrittura è possibile utilizzare solo cache alimentate a batteria) e se ci sono unità logiche configurate sul controller.

Sintassi:
<target> modify cr=#/#|?

dove <target> è un controller, e #/# è il rapporto cache nel formato percentuale lettura/percentuale scrittura.

Comando di esempio:
=> ctrl slot=3 modify cr=25/75

Attivazione o disattivazione della cache dell'unità

Su controller e unità che supportano la cache di scrittura dell'unità fisica, è possibile utilizzare questo comando per attivare o disattivare la cache di scrittura per tutte le unità del controller.

⚠️ **ATTENZIONE:** Poiché la cache di scrittura dell'unità fisica non è alimentata a batteria, potrebbero essere eliminati dei dati se si verifica un'interruzione di corrente durante un processo di scrittura. Per minimizzare questa possibilità, utilizzare un alimentatore di backup.

Sintassi:
<target> modify drivewritecache=enable|disable|? [forced]

dove <target> rappresenta un controller che supporta la cache di scrittura dell'unità.

Comando di esempio:
=> ctrl slot=5 modify dwc=enable

Attivazione o disattivazione dell'acceleratore di array

Se il controller è dotato di un acceleratore di array, è possibile disattivarlo o attivarlo per le unità logiche indicate.

⚠️ **NOTA:** La disattivazione dell'acceleratore di array per un'unità logica consente di riservare l'utilizzo della cache dell'acceleratore ad altre unità logiche dell'array. Questa funzione è utile se è necessario garantire alle altre unità logiche le massime prestazioni (ad esempio se le unità logiche contengono informazioni di database).
Sintassi:

<target> modify aa=enable|disable|?

Dove <target> rappresenta un'unità logica.

Comando di esempio:

=> ctrl slot=3 ld 1 modify aa=enable

Attivazione della chiusura di uno script in seguito a errore

Se si verifica un errore durante l'esecuzione di uno script, la parola chiave exitonerror consente allo script di decidere se proseguire o chiudere l'applicazione e restituire un codice di uscita.

Sintassi:

set [exitonerror=enable | disable]

Comandi di esempio:

set exitonerror=enable
set eoe=disable
show exitonerror

Uso dello scripting di HP SSA

Accedere ad HP SSA con uno dei diversi metodi disponibili:

● Accesso ad HP SSA in ambiente offline (Accesso ad HP SSA in ambiente offline a pagina 7)
● Accesso ad HP SSA in ambiente online (Accesso ad HP SSA in ambiente online a pagina 12)

L'applicazione Scripting di HP SSA offre due modalità di scripting:

● Modalità Capture (Acquisizione) per acquisire una configurazione (Acquisizione di una configurazione a pagina 72)

 HP SSA analizza la configurazione di tutti i controller di array interni ed esterni collegati al server e crea un file di script che descrive tale configurazione.

● Modalità Input (Immissione) per utilizzare uno script di immissione (Utilizzo di uno script di immissione a pagina 73)

Acquisizione di una configurazione

Per acquisire la configurazione di un sistema, immettere il seguente comando al prompt della riga di comando del sistema:

hpssascripting -c [drive:][path]OUTPUTFILENAME.ext [-internal | -external] -e [drive:][path]ERRORFILENAME.ext

OUTPUTFILENAME è il nome del file di acquisizione ed ext rappresenta l'estensione del file. Se non vengono specificati un nome e una posizione, viene utilizzato il nome predefinito HPSSAOUTPUT.ini e il file viene inserito nella directory di lavoro di HP SSA.
Le opzioni `-internal` ed `-external` limitano l'acquisizione ai controller interni o esterni.

Le informazioni dell'opzione `-e` vengono utilizzate solo se HP SSA deve generare un file di errore. Per impostazione predefinita, HP SSA assegna al file di errore il nome ERROR.ini e lo inserisce nella propria directory di lavoro.

Utilizzo di uno script di immissione

Per utilizzare uno script di immissione per configurare o riconfigurare un sistema, individuare innanzitutto uno script HP SSA appropriato o vedere "Creazione di un file di script HP SSA" (Creazione di un file di script HP SSA a pagina 73).

Immettere quindi il seguente comando al prompt della riga di comando del sistema:

```bash
```

`FILENAME` è il nome del file di immissione HP ed `ext` rappresenta l'estensione del file. Se non si specifica il nome e la posizione di questo file, HP SSA cercherà il file HPSSAINPUT.ini nella propria directory di lavoro.

Le opzioni `-internal` ed `-external` limitano le operazioni di configurazione ai controller interni o esterni.

Il flag `-reset` elimina i dati esistenti e sovrascrive la configurazione esistente con quella specificata nello script.

Le informazioni dell'opzione `-e` vengono utilizzate solo se HP SSA deve generare un file di errore. Per impostazione predefinita, HP SSA assegna al file di errore il nome ERROR.ini e lo inserisce nella propria directory di lavoro.

Creazione di un file di script HP SSA

Per creare un file di script HP SSA valido, utilizzare uno dei metodi seguenti:

- Modifica dello script di immissione personalizzato di esempio (Script di immissione personalizzato di esempio a pagina 74).
- Creazione di un file di acquisizione per acquisire una configurazione (Acquisizione di una configurazione a pagina 72).

È possibile creare un file di acquisizione da qualsiasi server con HP SSA e modificare i valori delle opzioni nel file in base al sistema di destinazione. Questo metodo risulta particolarmente indicato per applicare una configurazione standard a più server con risorse di memorizzazione simili.

- Creazione di uno script originale.

Ogni riga di testo in un file di script HP SSA è in formato `opzione=valore` e può contenere caratteri maiuscoli o minuscoli. Per informazioni sui valori possibili e per informazioni sulla configurazione minima valida per lo script, vedere il file di script di immissione personalizzato di esempio (Script di immissione personalizzato di esempio a pagina 74).

È possibile aggiungere delle righe vuote e commenti a qualsiasi script per renderne più agevole la lettura e la comprensione. Per creare un commento, immettere un punto e virgola seguito dal testo del commento. HP SSA ignora tutto il testo sulla stessa riga dopo il punto e virgola.
Script di immissione personalizzato di esempio

Lo script di esempio in questa sezione illustra tutti i valori possibili per ciascuna opzione.

- Se un'**opzione** viene visualizzata in grassetto, è necessario immettere un valore per tale opzione durante la creazione del proprio script.
- Se un **valore** viene visualizzato in grassetto, HP SSA utilizza quel valore come impostazione predefinita per creare nuove unità logiche.

È possibile utilizzare questo script come modello per i propri script.

Action = Configure|Reconfigure

Method = Custom|Auto; **COMMENTO:** HP SSA non è in grado di creare una configurazione RAID 50 o RAID 60 in modalità Auto. Queste configurazioni devono essere create automaticamente utilizzando l'impostazione Custom.

Controller = All | First | Slot [N] [:N] | WWN [N] | SerialNumber [N] | IOCabinet [N], IOBay [N], IOChassis [N], Slot [N], Cabinet [N], Cell [N]

ClearConfigurationWithDataLoss = Yes|No; **COMMENTO:** questa opzione è obsoleta.

LicenseKey = XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

DeleteLicenseKey = XXXXX-XXXXX-XXXXX-XXXXX-XXXXX | * ; **COMMENTO:** * è un carattere jolly che consente di eliminare tutte le chiavi di licenza nel controller specificato.

RAIDArrayID = “XXXXXXXXXXXXXXXXXXXXXXXXX”

ReadCache = 0|10|20|25|30|40|50|60|70|75|80|90|100

WriteCache = 0|10|20|25|30|40|50|60|70|75|80|90|100

RebuildPriority = Low|Medium|High

ExpandPriority = Low|Medium|High

SurfaceScanDelay = N

PreferredPathMode = Auto|Manual

; **COMMENTO:** Le seguenti cinque voci vengono utilizzate per ottimizzare le prestazioni video del controller

MNPDelay = 0|1|2|...|60; le unità sono minuti, zero significa disabilitato

IRPEnable = Yes|No

DPOEnable = Yes|No

ElevatorSortEnable = Yes|No

QueueDepth = 2|4|8|16|32|Auto

Array = A|B|C|D|E|F|G|...Z|a|b|c|d|e|f
OnlineSpare = None | N | Port:ID,Port:ID... | Box:Bay,Box:Bay... | Port:Box:Bay,Port:Box:Bay,... ; COMMENTO: questi valori sono disponibili solo nella modalità metodo Custom. In modalità Auto, le scelte sono Yes|No.

Drive = * | N | Port:ID,Port:ID... | Box:Bay,Box:Bay... | Port:Box:Bay,Port:Box:Bay,...

DriveType = SCSI | SAS | SATA

LogicalDrive = 1|2|3|...32

RAID = 0|1|5|50|6|60|adg|auto ; COMMENTO: per i controller HP Smart Array G6 e G7, RAID 6 e 60 sono solo disponibili quando SAAP è installato e la chiave di licenza è registrata.

ParityGroups = 2|N ; COMMENTO: necessario solo per RAID 50 o 60. N > 2

Size = [N]|Max

Sectors = 32|63

StripeSize = 8|16|32|64|128|256

ArrayAccelerator = Enable|Disable

PreferredPath = 1|2

HBA_WW_ID = WWN

ConnectionName = UserDefinedName

HostMode = Default | Windows | Windows(degrade | openVMS | Tru64 | Linux | Solaris | Netware | HP | Windows Sp2 ; COMMENTO: il valore Windows(degrade deve essere immesso come scritto.

Opzioni del file di script

Le opzioni nei file di script HP SSA sono suddivise nelle seguenti categorie:

- Categoria Control (Categoria Control a pagina 77)
- Categoria Controller (Categoria Controller a pagina 78)
- Categoria Array (Categoria Array a pagina 81)
- Categoria Logical Drive (Categoria Logical Drive a pagina 85)
- Categoria HBA (Categoria HBA a pagina 89)

Ogni categoria dispone di varie opzioni di scripting, ma non è sempre necessario assegnare valori a tutte le opzioni. In alcune istanze HP SSA può utilizzare valori predefiniti, mentre in altre un'opzione specificata può non essere fondamentale per un determinata configurazione o modalità di script.

Le opzioni per ogni categoria vengono elencate nella seguente tabella e descritte in dettaglio nella presente sezione.
<table>
<thead>
<tr>
<th>Categoria</th>
<th>Opzioni</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Controllo)</td>
<td>Action, Method</td>
<td>Queste opzioni definiscono il comportamento generale di HP SSA mentre elabora gli script e crea le configurazioni. Le opzioni di controllo possono ricorrere solo una volta in un file di script e devono essere prima specificate.</td>
</tr>
<tr>
<td>Controller</td>
<td>Controller, CacheState, ClearConfigurationWithDataLoss, DeleteLicenseKey, DPONable, DriveWriteCache, ElevatorSortEnable, ExpandPriority, IRPEnable, LicenseKey, MNPDelay, NoBatteryWriteCache, PreferredPathMode, QueueDepth, RaidArrayId, ReadCache, RebuildPriority, SurfaceScanDelay, SurfaceScanDelayExtended, SurfaceScanMode, WriteCache</td>
<td>Le opzioni di questa categoria specificano il controller che deve essere configurato (o il controller la cui configurazione è stata acquisita). Anche se l'opzione Controller deve aprire questa sezione dello script, le altre opzioni di questa categoria possono essere inserite in qualsiasi ordine. È possibile utilizzare un file di script per configurare tutti i controller in un sistema e configurare i controller in modo identico o individualmente. Se si definisce la configurazione di ciascun controller individualmente, immettere i valori per un controller e i relativi array e unità logiche prima di specificare i valori per un altro controller.</td>
</tr>
<tr>
<td>Array</td>
<td>Array, Unità, DriveType, Join, OnlineSpare, Split</td>
<td>Queste opzioni descrivono un array che deve essere configurato sul controller precedentemente specificato nello script (se non è stato precedentemente specificato un controller, HP SSA interrompe l'elaborazione dello script e genera un messaggio di errore). Anche se l'opzione Array deve aprire questa sezione dello script, le altre opzioni di questa categoria possono essere inserite in qualsiasi ordine.</td>
</tr>
<tr>
<td>Categoria</td>
<td>Opzioni</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Logical Drive</td>
<td>ArrayAccelerator</td>
<td>Queste opzioni descrivono un'unità logica che deve essere configurata su un array precedentemente specificato nello script (se non è stato precedentemente specificato un array, HP SSA interrompe l'elaborazione dello script e genera un messaggio di errore). Anche se l'opzione LogicalDrive deve aprire questa sezione dello script, le altre opzioni di questa categoria possono essere inserite in qualsiasi ordine.</td>
</tr>
<tr>
<td></td>
<td>LogicalDrive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NumberOfParityGroups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PreferredPath</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renumber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ResourceVolumeOwner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sectors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ShrinkSize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SizeBlocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>StripeSize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>StripeSize</td>
<td></td>
</tr>
<tr>
<td>HBA</td>
<td>ConnectionName</td>
<td>Queste opzioni specificano un HBA che deve essere configurato.</td>
</tr>
<tr>
<td></td>
<td>HBA_WW_ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HostMode</td>
<td></td>
</tr>
</tbody>
</table>

Categoria Control

La categoria Control comprende le seguenti opzioni:

- **Modalità Action** ([Modalità Action a pagina 77](#))
- **Modalità Method** ([Modalità Method a pagina 77](#))

Modalità Action

È necessario specificare una modalità di azione.

- In modalità Configure (Configura) è possibile solo creare nuovi array, mentre non è possibile modificare alcun array esistente. Il controller deve essere collegato a unità fisiche non assegnate disponibili per questa modalità.
- In modalità Reconfigure (Riconfigura) è possibile modificare array esistenti. Per esempio, è possibile impostare l'espansione di un array, l'estensione o la migrazione di un'unità logica. Queste procedure non causano la distruzione di dati, a meno che si desideri specificamente cancellarli. In questa modalità, HP SSA non modifica l'impostazione di opzioni esistenti, a meno che non si specifichi appositamente un valore diverso per tale opzione.

Se si utilizza il parametro della riga di comando `-reset`, la configurazione del controller esistente viene cancellata con perdita di dati al primo passaggio della procedura di configurazione. Questo parametro della riga di comando non è compatibile con la modalità Reconfigure (Riconfigura).

Modalità Method

Auto (Automatica) è il valore predefinito di questa opzione. Se si desidera utilizzare la modalità Custom (Personalizzata) è necessario specificarlo.
In modalità Auto (Automatica), HP SSA può effettuare l'espansione, l'estensione o la migrazione senza l'intervento dell'utente se i valori impostati per le altre opzioni implicano che tale operazione è necessaria.

Categoria Controller

La categoria Controller comprende le seguenti opzioni:

- **Controller** ([Controller a pagina 78])
- **CacheState** ([CacheState a pagina 79])
- **ClearConfigurationWithDataLoss** ([ClearConfigurationWithDataLoss a pagina 79])
- **DeleteLicenseKey** ([LicenseKey, DeleteLicenseKey a pagina 79])
- **DPOEnable** ([Opzioni relative alle prestazioni video a pagina 81])
- **DriveWriteCache** ([DriveWriteCache a pagina 79])
- **ElevatorSortEnable** ([Opzioni relative alle prestazioni video a pagina 81])
- **ExpandPriority** ([RebuildPriority, ExpandPriority a pagina 80])
- **IRPEnable** ([Opzioni relative alle prestazioni video a pagina 81])
- **LicenseKey** ([LicenseKey, DeleteLicenseKey a pagina 79])
- **MNPDelay** ([Opzioni relative alle prestazioni video a pagina 81])
- **NoBatteryWriteCache** ([NoBatteryWriteCache a pagina 79])
- **PreferredPathMode** ([PreferredPathMode a pagina 79])
- **QueueDepth** ([Opzioni relative alle prestazioni video a pagina 81])
- **RaidArrayId** ([RaidArrayId a pagina 80])
- **ReadCache** ([ReadCache, WriteCache a pagina 80])
- **RebuildPriority** ([RebuildPriority, ExpandPriority a pagina 80])
- **SurfaceScanDelay** ([SurfaceScanDelay a pagina 80])
- **SurfaceScanDelayExtended** ([SurfaceScanDelayExtended a pagina 80])
- **WriteCache** ([ReadCache, WriteCache a pagina 80])

Controller

È necessario immettere un valore per questa opzione in quanto identifica il controller da configurare.

- **All** — Configura tutti i controller rilevati nel sistema.
- **First** — Configura il controller rilevato per primo nel sistema in base al controller con il minor numero di alloggiamenti PCI. I controller interni sono utilizzati prima di quelli esterni.

I parametri della riga di comando `-internal ed -external influenzano quello che HP SSA considera il controller First. Ad esempio, se si usa il parametro `-external, il controller First è il primo controller esterno ad essere rilevato, indipendentemente dal numero di controller interni presenti nel sistema host.

- **Slot [N][::M]** — Configura il controller interno nello slot numero N o il controller esterno alla porta M nello slot N.
- **WWN** \([N]\) — Configura il controller esterno corrispondente al nome universale (WWN) \(N\).
- **SerialNumber** \([N]\) — Configura il controller di memorizzazione condivisa con il numero di serie \(N\).
- **IOCabinet\([N]\), IOBay\([N]\), IOChassis\([N]\), Slot\([N]\), Cabinet\([N]\), Cell\([N]\)** — Configura il controller del server Integrity le cui informazioni sul percorso dello slot sono definite da questa sequenza di identificatori.

CacheState

Questa opzione consente di allineare la cache o disabilitare la funzione di allineamento della cache. I valori sono **FlushEnable** e **FlushDisable**.

È possibile usare questa opzione per prevenire problemi di cache non aggiornata.

ClearConfigurationWithDataLoss

La cancellazione della configurazione causa la perdita di dati in quanto elimina tutti i volumi logici e gli array del controller. Se si cancella una configurazione è possibile scrivere i comandi nel file di script in un secondo momento per creare una nuova configurazione sfruttando la capacità dell'unità resa disponibile.

I valori per questa opzione sono **Yes** (Sì) o **No**. Il valore predefinito è **No**.

DriveWriteCache

Questa opzione controlla le impostazioni della cache di scrittura per tutti i dischi fisici collegati. Per questa opzione, l'impostazione è **Enable** (Abilita) o **Disable** (Disabilita). Non tutti i dischi fisici o i controller supportano questa opzione.

LicenseKey, DeleteLicenseKey

Queste opzioni consentono di immettere la chiave di licenza di 25 caratteri per attivare o disattivare alcune funzioni del controller. È possibile immettere anche i trattini, sebbene non siano richiesti.

NoBatteryWriteCache

Con questa opzione il controller può abilitare la cache di scrittura quando la batteria non è presente o è guasta. I valori sono **Enable** o **Disable**. Il valore predefinito è **Disable**.

Alcuni controller non supportano questa opzione.

PreferredPathMode

Il valore selezionato per questa opzione determina il modo in cui il percorso di I/O preferito verso una particolare unità logica viene impostato per un controller di array ridondante in configurazione Active/Active (Attivo/Attivo).

Questa funzione viene supportata solo da alcuni tipi di controller e non utilizzata dai controller con configurazione Active/Standby (Attivo/Standby).

- **Auto** (Automatica) rappresenta l'impostazione predefinita per le nuove configurazioni. In questo caso, il sistema di memorizzazione seleziona automaticamente il percorso di I/O dal controller ridondante all'unità logica e bilancia dinamicamente il carico di tutti i percorsi.
- **Manual** (Manuale) consente di assegnare l'unità logica a un controller ridondante specifico. Se si seleziona questa impostazione, utilizzare il comando **PreferredPath** (**PreferredPath a pagina 86**) per specificare il percorso.
Se durante la riconfigurazione di un controller non viene specificato alcun valore per questa opzione, viene mantenuta invariata l'impostazione esistente.

RaidArrayId

Questa opzione specifica il RaidArrayId per i controller che supportano questa funzionalità come i controller fibre e i controller di memorizzazione condivisa. RaidArrayId è una stringa definita dall'utente che identifica i controller.

"XXXXXXXXXXXXXXXXXXXXXXXXX"

Il valore può essere una stringa di lunghezza variabile formata dai seguenti caratteri:

a-z A-Z 0-9 ! @ # * () , - _ + : . / [space]

Questa stringa non può concludersi con uno spazio e presenta una lunghezza massima variabile in base al tipo di controller. Per i controller RA4x00 la lunghezza massima è di 24 caratteri. Per gli altri controller, la lunghezza massima è di 20 caratteri. Le virgolette a chiusura della stringa sono opzionali. Le virgolette consentono di usare gli spazi iniziali in RaidArrayId.

ReadCache, WriteCache

Inserire un numero compreso tra 0 e 100 per specificare la percentuale di cache da assegnare alle funzioni di lettura e scrittura dell'unità. Il valore predefinito per entrambe le opzione è 50 a meno che il firmware del controller non fornisca un rapporto specifico di lettura/scrittura.

Il rapporto cache consentito dipende dal modello del controller e dal fatto che la cache di scrittura sia alimentata a batteria.

RebuildPriority, ExpandPriority

Queste opzioni stabiliscono la priorità per le funzioni di ricostruzione ed espansione. Ogni opzione ha tre possibili valori: Low, Medium e High.

Queste opzioni non sono necessarie.

SurfaceScanDelay

Immettere un numero tra 0 e 30 per specificare la durata del ritardo di scansione superficie in secondi. Questa opzione non è necessaria. Se non si specifica un valore per questa opzione, il ritardo rimane inalterato. Un valore pari a 0 disabilita la scansione.

SurfaceScanDelayExtended

Immettere un numero compreso tra 0 e 300 per specificare la durata del ritardo di scansione superficie in decimi di secondo. Questa opzione non è necessaria. Se non si specifica un valore per questa opzione, il ritardo rimane inalterato. Un valore pari a 0 disabilita la scansione.

Se questo parametro e SurfaceScanDelay si trovano entrambi nel file di input, il parametro assume la precedenza.
SurfaceScanMode

Questo parametro specifica la modalità scansione superficie con i seguenti valori:

- **Idle** — L'intervallo del ritardo è impostato con i valori normali di `SurfaceScanDelay` o `SurfaceScanDelayExtended`.
- **High** — La scansione superficie attiva una modalità che garantisce la progressione nonostante il livello di I/O del controller.
- **Disabled** — Non è selezionata alcuna modalità.

Opzioni relative alle prestazioni video

Per utilizzare queste funzioni in un controller HP Smart Array G6 o G7, è necessaria una chiave di licenza SAAP registrata ([Informazioni su SAAP a pagina 5](#)).

Per ottimizzare le prestazioni del controller per il video, impostare i seguenti valori per le opzioni indicate di seguito:

- `DPOEnable` = No
- `ElevatorSortEnable` = Yes
- `IRPEnable` = No

Inoltre, effettuare le seguenti operazioni:

- **Impostare `MNPDelay` su un valore intero compreso tra 1 e 60 (l'unità rappresenta un minuto).** Per disabilitare questa opzione, impostare il valore a zero.
- **Impostare `QueueDepth` su uno dei seguenti valori:**

 2|4|8|16|32|Automatic

Categoria Array

La categoria Array comprende le seguenti opzioni:

- **Array** ([Array a pagina 82](#))
- **CachingArray** ([CachingArray a pagina 82](#))
- **Drive** ([Unità a pagina 82](#))
- **DriveType** ([DriveType a pagina 83](#))
- **Join** ([Join a pagina 83](#))
- **OnlineSpareMode** ([OnlineSpareMode a pagina 84](#))
- **OnlineSpare** ([OnlineSpare a pagina 84](#))
- **Split** ([Split a pagina 84](#))
Array

Immettere una lettera o una coppia di lettere per identificare l'array da creare o riconfigurare, considerando le limitazioni seguenti:

- In modalità Configure (Configura), HP SSA crea un nuovo array. Il valore specificato per l'opzione dell'array deve essere la prima lettera o coppia di lettere disponibili nella sequenza, secondo il numero di array presenti sul controller. AA è successivo a Z e BA è successivo ad AZ.
- In modalità Reconfigure (Riconfigura), HP SSA può creare un nuovo array o riconfigurarne uno esistente. In questo caso, il valore specificato può identificare un array esistente o può corrispondere alla prima lettera o coppia di lettere di array disponibili nella configurazione esistente.

CachingArray

Questa opzione specifica l'ID dell'array cache.

- In modalità Configure (Configura), HP SSA crea un nuovo array cache. Il valore specificato per l'opzione dell'array deve essere la prima lettera disponibile nella configurazione esistente. AA è successivo a Z e BA è successivo ad AZ.
- Nella modalità Reconfigure (Riconfigura), la lettera identifica un array esistente o può corrispondere alla prima lettera di array disponibile nella configurazione esistente per creare un nuovo array.

Unità

Utilizzare questa opzione nel file di input per specificare le nuove unità fisiche dell'array. Utilizzare questa opzione per costruire un nuovo array o per espandere, ridurre o spostare un array esistente.

Osservare le seguenti istruzioni:

- Nel caso dell'espansione dell'array, ciascuna unità aggiunta deve avere una capacità non inferiore a quella della più piccola unità già presente nell'array. Le unità aggiunte e quelle esistenti nell'array devono essere dello stesso tipo (ad esempio, SAS o SATA).
- Se si sposta o si riduce un array, scripting HP SSA confronta le unità correnti con quelle richieste e determina se l'operazione è di spostamento o riduzione. La riduzione o lo spostamento di un array è supportato solo nella modalità Custom (Personalizzata).
- Se il valore dell'opzione ClearConfigurationWithDataLoss (ClearConfigurationWithDataLoss a pagina 79) è impostato su Yes, è possibile utilizzare l'opzione Drive (Unità) per rimuovere le unità dall'array.
Determinare la modalità da usare:

- **Modalità Auto method** (Metodo automatico) - HP SSA configura tutte le unità disponibili sul controller in un array. Se le unità sono di capacità diverse, HP SSA determina la capacità dell'unità più piccola e utilizza la stessa quantità di spazio su tutte le altre unità disponibili.

- **Modalità Custom method** (Metodo personalizzato) - Per specificare le unità da utilizzare nell'array (array diversi sullo stesso controller possono utilizzare metodi diversi), scegliere uno dei seguenti metodi:
 - Per specificare singole unità, utilizzare una convenzione appropriata (port:ID, box:bay o port:box:bay).
 - Per specificare solo il numero di unità da utilizzare (non quale specifico ID di unità utilizzare), immettere il numero come valore per questa opzione. Ad esempio, se si immette `drive=3`, HP utilizza le prime tre unità disponibili per creare o espandere l'array specificato che viene definito nel resto dello script. HP SSA determina automaticamente quali unità sono appropriate per l'utilizzo.
 - Per utilizzare tutte le unità disponibili, immettere un asterisco come valore per questa opzione. Un array configurato con questo metodo non può avere un'unità di riserva.

DriveType

Questa opzione specifica il tipo di interfaccia per le unità che HP SSA deve usare per creare l'array. Scegliere uno dei tipi di unità valido:

```
[SCSI | SAS | SATA | SATASSD | SASSSD]
```

Il valore è spesso utilizzato con il carattere jolly (*) o l'argomento numerico per Drive (Unità).

Join

Per utilizzare il comando `Join (Unisci)`, attenersi ai seguenti requisiti:

- Il sistema deve essere offline.
- All'avvio dello scripting HP SSA, l'indicatore della riga di comando -offline deve essere impostato.

Il comando non risponde se il sistema operativo riporta che uno dei volumi compresi nell'unione è in uso.

⚠️ **ATTENZIONE:** L'esecuzione del comando Join in un sistema online può dar luogo a errori nel kernel, schermate blu e/o perdita dei dati.

Il comando `Split (Dividi)` converte un volume logico RAID 1 o RAID 10 in due volumi logici RAID 0. L'opzione `Join (Unisci)` inverte la suddivisione ricombinando i due volumi RAID 0 in un singolo volume RAID 1 o RAID 10, a seconda del numero di dischi fisici.

Per questo processo, l'ID è l'identificativo del volume risultante dall'unione. Tutti i dati presenti sull'altro volume andranno persi.

```python
Array = C
Join = A
```

Dopo l'esecuzione del comando l'Array C viene rimosso e i relativi dischi fisici sono ora un mirror delle unità presenti nell'Array A. I contenuti originali dell'Array C andranno persi.
OnlineSpareMode

Il valore immesso per questa opzione specifica il comportamento delle unità di riserva quando vengono attivate.

Per i controller che supportano la modalità di sostituzione automatica delle unità, l'impostazione di questo valore su **AutoReplace** consente a un'unità di riserva ricostruita di diventare un'unità dati nell'array. Quando l'unità dati guasta viene sostituita, assume il ruolo della precedente unità di riserva eliminando la necessità di ricostruire un secondo array.

<table>
<thead>
<tr>
<th>Comportamento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated (Dedicata)</td>
<td>Valore predefinito per le unità di riserva</td>
</tr>
<tr>
<td>AutoReplace</td>
<td>L'unità di riserva diventa un'unità dati al termine della ricostruzione.</td>
</tr>
</tbody>
</table>

OnlineSpare

Il valore per questa opzione determina se l'array precedentemente specificato nello script verrà configurato con unità di riserva.

Il tipo di interfaccia per le unità e le unità di riserva deve corrispondere: ad esempio, tutte SAS o tutte SATA.

<table>
<thead>
<tr>
<th>Modalità Method</th>
<th>Valore possibile</th>
<th>Valore predefinito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom (Personalizzato)</td>
<td>Per specificare esattamente quali unità utilizzare come unità di riserva, utilizzare una convenzione appropriata (port:ID, box: bay o port: box: bay).
Per specificare solo il numero di unità di riserva e non l'ID esatto, immettere il numero come valore per questa opzione. HP SSA seleziona automaticamente solo quelle unità che sono appropriate per l’array.
Per specificare che l’array non deve avere unità di riserva, immettere None.</td>
<td>In modalità Action = Configure (Configura): None
In modalità Action = Reconfigure (Riconfigura) HP ignora qualsiasi valore immesso per questa opzione e mantiene le eventuali unità di riserva già presenti nella configurazione.</td>
</tr>
<tr>
<td>Auto</td>
<td>Yes (indica un'unità di riserva)
No</td>
<td>In modalità Action = Configure (Configura): Yes (indicante un'unità di riserva)
In modalità Action = Reconfigure (Riconfigura) HP ignora qualsiasi valore immesso per questa opzione e mantiene le eventuali unità di riserva già presenti nella configurazione.</td>
</tr>
</tbody>
</table>

Split

Questo comando consente la suddivisione dei volumi RAID 1 o RAID 10 in volumi individuali RAID 0. Sono disponibili due valori:

HIDDEN — Il driver nasconde il nuovo volume logico al sistema operativo.

VISIBLE — Il nuovo volume logico è immediatamente visibile al sistema operativo.
Categoria Logical Drive

La categoria Logical Drive comprende le seguenti opzioni:

- **ArrayAccelerator** ([ArrayAccelerator a pagina 85](#))
- **LogicalDrive** ([LogicalDrive a pagina 85](#))
- **CachingLogicalDrive** ([CachingLogicalDrive a pagina 85](#))
- **CachedLogicalDrive** ([CachedLogicalDrive a pagina 86](#))
- **NumberOfParityGroups** ([NumberOfParityGroups a pagina 86](#))
- **PreferredPath** ([PreferredPath a pagina 86](#))
- **RAID** ([RAID a pagina 86](#))
- **Renumber** ([Renumber a pagina 87](#))
- **Repeat** ([Repeat a pagina 87](#))
- **ResourceVolumeOwner** ([ResourceVolumeOwner a pagina 87](#))
- **Sectors** ([Sectors a pagina 88](#))
- **ShrinkSize** ([ShrinkSize a pagina 88](#))
- **Size** ([Dimensione a pagina 88](#))
- **SizeBlocks** ([SizeBlocks a pagina 88](#))
- **StripeSize** ([StripeSize a pagina 88](#))
- **StripSize** ([StripSize a pagina 89](#))

ArrayAccelerator

Questa opzione specifica se l'acceleratore array è abilitato o disabilitato per l'unità logica specificata. Il valore predefinito è Enabled (Abilitato).

LogicalDrive

Il valore immesso per questa opzione specifica il numero ID dell'unità logica che deve essere creata o modificata. La prima unità logica in un array deve avere un ID di 1 (non 0) e la numerazione delle unità logiche deve essere sequenziale.

- In modalità Action = Configure, HP SSA accetta solo il numero ID della successiva unità logica possibile.
- In modalità Action = Reconfigure, HP SSA accetta anche il numero ID di qualsiasi unità logica esistente.

CachingLogicalDrive

Il valore immesso per questa opzione specifica il numero ID dell'unità logica cache che deve essere creata o modificata. La prima unità logica in un array deve avere un ID di 1 (non 0) e la numerazione delle unità logiche deve essere sequenziale.

- In modalità di configurazione, HP SSA accetta solo il numero ID della successiva unità logica possibile.
- In modalità di riconfigurazione, HP SSA accetta anche il numero ID di una qualsiasi unità logica esistente.
Le unità logiche cache e le unità dati memorizzate nella cache devono trovarsi sullo stesso controller dell'array.

CachedLogicalDrive

Il valore immesso per questa opzione specifica il numero ID dell'unità logica dati da associare all'unità logica cache.

In modalità di configurazione, HP SSA accetta anche il numero ID di una qualsiasi unità logica esistente.

Le unità logiche cache e le unità dati memorizzate nella cache devono trovarsi sullo stesso controller dell'array.

NumberOfParityGroups

Quando si crea una configurazione RAID 50 o RAID 60, è necessario impostare anche il numero di gruppi di parità.

Per questa impostazione è possibile utilizzare un valore intero qualsiasi maggiore di 1 e soddisfare un'unica restrizione ossia che il numero totale di unità fisiche nell'array sia un multiplo del numero di gruppi di parità.

Il numero massimo di gruppi di parità possibile per un determinato numero di unità fisiche è il numero totale di unità diviso per il numero di unità minimo necessario per tale livello RAID (tre per RAID 50, quattro per RAID 60).

PreferredPath

Se si seleziona l'impostazione Manual (Manuale) per PreferredPathMode (PreferredPathMode a pagina 79), utilizzare il comando PreferredPath per specificare il percorso di I/O all'unità logica per un controller ridondante in modalità Active/Active (Attivo/Attivo).

L'impostazione predefinita per questa opzione è 1. Se si seleziona questa impostazione, il controller nello slot 1 del telaio costituisce il controller preferito per il percorso di I/O all'unità logica. Se si seleziona 2, il controller che si trova nello slot 2 del telaio viene utilizzato come controller preferito per l'unità logica.

Per determinare i numeri degli slot del telaio, utilizzare il comando show su un controller in grado di supportare controller ridondanti.

RAID

Il valore immesso per questa opzione specifica il livello RAID per l'unità logica.

- Quando la modalità Action è Configure e la modalità Method è Auto, HP SSA seleziona automaticamente il livello RAID più alto che il controller e la configurazione di unità possano supportare eccetto RAID 50 o RAID 60. Per specificare RAID 50 o RAID 60 per un controller che supporti uno di questi livelli RAID, utilizzare l'impostazione Custom (Personalizzata). In tal caso, è necessario specificare anche il numero di gruppi di parità (NumberOfParityGroups a pagina 86).

- Quando la modalità Action è impostata su Reconfigure, il valore predefinito corrisponde al livello RAID esistente per tale unità logica. Se si specifica un'impostazione diversa per il RAID, HP SSA ignora la nuova impostazione (quando la modalità Method è Auto) oppure cerca di migrare l'unità logica al livello RAID specificato (quando la modalità Method è Custom).
HP SSA supporta i seguenti valori per livelli RAID:

- **60** — RAID 60
- **50** — RAID 50
- **ADG** — RAID ADG è l'equivalente di RAID 6
- **6** — RAID 6
- **5** — RAID 5
- **4** — RAID 4
- **10ADM** — RAID 1 con mirror a tre vie
- **10** — RAID 10 (mirroring con 2 dischi)
- **1ADM** — RAID 1 con mirror a tre vie
- **1** — RAID 1 (mirroring con 2 dischi)
- **0** — RAID 0

Quando si utilizza un controller HP Smart Array G6 o G7, alcuni livelli RAID richiedono SAAP (Informazioni su SAAP a pagina 5).

Renumber

Questa opzione rinumera l'unità logica a N.

Generalmente utilizzata dopo un comando **Join** (Unisci), questa opzione garantisce la corretta impostazione della numerazione del volume logico (ad esempio, il volume di avvio è ID 1).

Non combinare le operazioni Renumber e Join nello stesso script, poiché lo scripting HP SSA non aggiorna lo stato interno dopo una rinumerazione. Se altri comandi vengono combinati con **Renumber**, i comandi destinati a specifici volumi potrebbero arrivare al volume non corretto.

Repeat

Il valore inserito per questa opzione specifica il numero di volte in cui HP SSA deve ripetere la configurazione di questa unità logica.

Utilizzare uno dei seguenti valori:

- **N** — In modalità di configurazione, HP SSA crea N nuove unità logiche.
- **MAX** — HP SSA crea il numero massimo consentito di unità logiche. Il numero di unità create dipende dal numero di unità esistenti e dal numero massimo di unità logiche supportate dal controller.

È necessario specificare l'ID dell'unità logica come **Next**. L'opzione **Size** (Dimensione) controlla la dimensione di ciascuna unità logica oppure, se la dimensione è impostata su **MAX**, la dimensione dei volumi è impostata sul consumo di tutto lo spazio disponibile sull'array.

ResourceVolumeOwner

Questa opzione specifica che un'unità logica esistente (N) deve essere un volume di risorsa istantanea. Questa opzione specifica anche l'ID dell'unità logica proprietaria. Se questo comando non viene specificato su alcuni controller di modello precedente, l'unità logica rimane un normale volume dati.
Sectors

Questa opzione specifica il numero di settori che ciascuna traccia deve comprendere. Immettere 32 per disabilitare MaxBoot, 63 per attivarlo.

- Per le nuove unità logiche, nel caso in cui l'unità logica sia maggiore di 502 GB, l'impostazione predefinita è 63, altrimenti l'impostazione predefinita corrisponde a 32.
- L'impostazione predefinita di una unità esistente è l'impostazione data.

Se la funzione MaxBoot è abilitata, è probabile che le prestazioni dell'unità logica risultino leggermente inferiori.

ShrinkSize

In modalità Reconfigure (Riconfigurazione), questa opzione specifica la dimensione (in MB) dell'unità logica da ridurre.

ShrinkSize non è valido in modalità Configure (Configura).

Dimensione

Questo parametro specifica le dimensioni desiderate dell'unità logica.

Per impostare le dimensioni, utilizzare i valori seguenti:

- **N** — La dimensione in MB
- **MAX** — Utilizza tutto lo spazio disponibile inutilizzato nell'array per l'unità logica. Questa opzione rappresenta il valore predefinito.
- **MAXMBR** — Crea la dimensione maggiore possibile del volume supportabile da parte di un MBR (Master Boot Record) a 32 bit (2 TiB)

In modalità Reconfigure (Riconfigurazione), l'impostazione predefinita è la dimensione esistente dell'unità logica. Se si specifica un valore superiore, nel caso in cui le unità dello stesso array presentino della capacità inutilizzata, HP SSA estende l'unità logica a una nuova dimensione, sempre che il sistema operativo supporti l'estensione dell'unità logica. Non è possibile ridurre la dimensione dell'unità logica.

⚠️ **ATTENZIONE:** Effettuare il backup di tutti i dati prima di estendere un'unità logica.

SizeBlocks

Questa opzione specifica la dimensione di un'unità logica in blocchi da 512 byte. Usare questa opzione per impostare la dimensione esatta senza arrotondare.

Quando uno scripting HP SSA acquisisce una configurazione, riporta le dimensioni del volume arrotondate per difetto al MB più prossimo. Quando l'acquisizione viene riprodotta, la dimensione viene ridotta per adattarsi alla dimensione in MB già arrotondata. Questa opzione previene la perdita di dimensione del volume per le generazioni successive di acquisizioni.

Tuttavia, se la dimensione non è adeguata alla geometria dell'array a causa della differenza dei dischi o dei livelli RAID, la dimensione verrà arrotondata per difetto per corrispondere alla geometria.

StripeSize

A partire da HP SSA, CLI e scripting di HP SSA, il termine **stripe size** (dimensione di stripe) è stato sostituito da **strip size** (dimensione di strip). Questo cambio di denominazione non influisce sulla funzionalità.
Quando si distribuiscono i dati su diverse unità fisiche (striping), lo **strip size** (dimensione di strip) corrisponde alla quantità di dati scritta su ciascuna unità fisica. La **full stripe size** (dimensione di stripe completa) si riferisce alla dimensione combinata di tutti gli strip in tutte le unità fisiche ad esclusione delle unità solo con parità.

Per ulteriori informazioni, vedere l'opzione StripSize (**StripSize a pagina 89**).

StripSize

A partire da HP SSA, CLI e scripting di HP SSA, l'opzione StripSize sostituisce l'opzione StripeSize. Quando si distribuiscono i dati su diverse unità fisiche (striping), lo **strip size** (dimensione di strip) corrisponde alla quantità di dati scritta su ciascuna unità fisica. La **full stripe size** (dimensione di stripe completa) si riferisce alla dimensione combinata di tutti gli strip in tutte le unità fisiche ad esclusione delle unità solo con parità.

Per questa opzione è possibile immettere un valore numerico per specificare la dimensione dello strip di dati (in KB) o non immettere nessun valore e consentire ad HP SSA di utilizzare quello predefinito.

Le dimensioni dello strip disponibili per livello RAID variano in base al controller e al livello firmware del controller. La dimensione massima dello strip cambia in modo dinamico ed è ridotta per gli array con un gran numero di unità dati o con dimensioni della cache del controller inferiori. (Il controller deve essere in grado di leggere un intero strip di dati alla volta nella memoria cache durante la trasformazione). La memoria disponibile è il fattore limitante.

Sono disponibili le seguenti dimensioni di strip:

- 8: 8 KB
- 16: 16 KB
- 32: 32 KB
- 64: 64 KB
- 128: 128 KB
- 256: 256 KB
- 512: 512 KB
- 1024: 1.024 KB (supportata a partire dai controller Gen8)

Il valore predefinito della dimensione di striping dipende dalla modalità Action:

- In modalità Action = Configure, il valore predefinito è determinato dal livello RAID specificato precedentemente nello script.
- In modalità Action = Reconfigure, il valore predefinito per questa opzione è la dimensione di strip che è già stata configurata per l'unità logica. Se si specifica un valore diverso dalla dimensione di strip esistente, HP SSA cercherà di migrare l'unità logica alla dimensione di strip specificata. Per migrare l'unità logica, eseguire il backup di tutti i dati prima di avviare la procedura di migrazione.

Categoria HBA

La categoria HBA comprende le seguenti opzioni:

- **ConnectionName** (**ConnectionName a pagina 90**)
- **HBA_WW_ID** (**HBA_WW_ID a pagina 90**)
- **HostMode** (**HostMode a pagina 90**)
ConnectionName

Questa opzione è una stringa definita dall’utente come nome di connessione per l’HBA specificato.

La stringa può essere costituita da:

- Un numero massimo di 16 caratteri
- Caratteri con spazio incorporato, ma non può terminare con uno spazio
- Uno dei seguenti caratteri: a–z, A–Z, 0–9, !, @, #, *, (,), -, _, +, :, ., /, e [spazio].

HBA_WW_ID

Questa opzione specifica quale HBA viene modificato dalle modifiche di configurazione sulla base del WWN assegnato.

HostMode

Questa opzione specifica la modalità Host per un HBA selezionato. L'impostazione della modalità Host ottimizza l'array di memorizzazione per il sistema operativo selezionato. Le modalità Host disponibili per un HBA sono specifiche per dispositivo. Non tutte le modalità sono disponibili su tutti i dispositivi. Non tutti gli HBA supportano un HostMode.

Potrebbero essere disponibili le seguenti opzioni del sistema operativo:

- Impostazione predefinita
- Microsoft® Windows®
- OpenVMS
- Tru64
- Linux
- Solaris
- NetWare
- HP-UX

Supporto per XML

Lo scripting HP SSA supporta un formato di file XML per l'input e l'output.

Output XML

Per creare un documento di output XML, utilizzare un suffisso XML con il nome del file di output:

C:\hpssascripting -c out.xml

Il testo seguente costituisce un esempio di un file di output XML.

```xml
<?xml version="1.0"?>
<Config.document>
<!-- Date captured: Tue Jun 09 10:03:08 2009 -->
<!-- Version: 8:30:4 -->
<Action>Configure</Action>
</Method>Custom</Method>
```
<Controller ID="Slot 1">
<!-- Controller HP Smart Array P410, Firmware Version 1.99 -->
<ReadCache>25</ReadCache>
<WriteCache>75</WriteCache>
<RebuildPriority>Medium</RebuildPriority>
<ExpandPriority>Medium</ExpandPriority>
<SurfaceScanDelay>3</SurfaceScanDelay>
<DriveWriteCache>Disabled</DriveWriteCache>
<LicenseKey>35DRP-7RH6S-R89GR-4MX6N-8K48X</LicenseKey>
<!-- LicenseKeyType "Flex License" -->
<MNPDelay>60</MNPDelay>
<IRPEnable>Disabled</IRPEnable>
<DPOEnable>Disabled</DPOEnable>
<ElevatorSortEnable>Enabled</ElevatorSortEnable>
<QueueDepth>Automatic</QueueDepth>
<!-- Unassigned Drives 1I:4:5 (60.0 GB), 2I:2:1 (72 GB) -->
<Array ID="A">
<!-- Array Drive Type is Solid State SATA -->
<!-- Free space 0 GBytes -->
<!-- 1I:4:8 (120.0 GB),1I:4:7 (120.0 GB) -->
<Drive>1I:4:8, 1I:4:7</Drive>
<OnlineSpare>No</OnlineSpare>
<LogicalDrive ID="1">
<Raid>1</Raid>
<Size>114439</Size>
<Sectors>32</Sectors>
<StripeSize>128</StripeSize>
<ArrayAccelerator>Enabled</ArrayAccelerator>
</LogicalDrive>
</Array>
<Array ID="B">
<!-- Array Drive Type is SAS -->
<!-- Free space 0 GBytes -->
<!-- 1I:4:6 (72 GB),2I:2:4 (72 GB),2I:2:3 (72 GB),2I:2:2 (72 GB) -->
<Drive>1I:4:6, 2I:2:4, 2I:2:3, 2I:2:2</Drive>
</Array>
L’input XML segue lo stesso formato del documento per l'output XML (Output XML a pagina 90). Usare lo stesso ordine di parametri come per il formato di input standard.
L'esempio seguente illustra un semplice script di input in entrambi i formati, XML e standard.

<table>
<thead>
<tr>
<th>Formato standard</th>
<th>Formato XML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action= Configure</td>
<td><xml version="1.0"?></td>
</tr>
<tr>
<td>Method= Custom</td>
<td><Config.document></td>
</tr>
<tr>
<td>Controller= Slot 1</td>
<td><Action>Configure</Action></td>
</tr>
<tr>
<td>Array=A</td>
<td><Method>Custom</Method></td>
</tr>
<tr>
<td>Drive= 1I:4:8, 1I:4:7</td>
<td><Controller ID="Slot 1"></td>
</tr>
<tr>
<td>LogicalDrive= 1</td>
<td><Array ID="A"></td>
</tr>
<tr>
<td>RAID= 0</td>
<td><Drive>1I:4:8, 1I:4:7</Drive></td>
</tr>
<tr>
<td>Size= 100000</td>
<td><LogicalDrive ID="1"></td>
</tr>
<tr>
<td></td>
<td><Raid>0</Raid></td>
</tr>
<tr>
<td></td>
<td><Size>100000</Size></td>
</tr>
<tr>
<td></td>
<td></LogicalDrive></td>
</tr>
<tr>
<td></td>
<td></Array></td>
</tr>
<tr>
<td></td>
<td></Controller></td>
</tr>
<tr>
<td></td>
<td></Config.document></td>
</tr>
</tbody>
</table>

DTD per file di input XML

Il seguente DTD evidenzia i parametri per un file di input XML di uno scripting ACU.

```
<!DOCTYPE Config.document [ 
<!ELEMENT Config.document ( Action, Method, Controller+ ) >
<!ELEMENT Action ( Configure | Reconfigure ) >
<!ELEMENT Method ( Auto | Custom ) >
<!ELEMENT Controller, Array ) ChassisName? |
ClearConfigurationWithDataLoss | DPOEnable? | DriveWriteCache? | 
ElevatorSortEnable? | ExpandPriority? | IRPEnable? | Initiator? | 
LicenseKey? | MNPDelay? | PreferredPathMode? | QueueDepth? | ReadCache? | 
RebuildPriority? | SurfaceScanDelay? | WriteCache? ) >
<!ATTLIST Controller ID PCDATA #REQUIRED >
<!ELEMENT ClearConfigurationWithDataLoss ( YES | NO ) NO >
<!ELEMENT DPOEnable ( YES | NO ) >
<!ELEMENT DriveWriteCache ( ENABLE | DISABLE ) >
<!ELEMENT ElevatorSortEnable ( YES | NO ) >
<!ELEMENT ExpandPriority ( HIGH | MEDIUM | LOW ) >
<!ELEMENT IRPEnable ( YES | NO ) >
<!ELEMENT LicenseKey ( #PCDATA ) >
```
Messaggi di avviso per lo scripting HP SSA

<table>
<thead>
<tr>
<th>Codice di avviso</th>
<th>Messaggio di avviso</th>
<th>Commento o chiarificazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>License key is already installed (Chiave di licenza già installata)</td>
<td>Il file di input specifica una chiave di licenza. Tuttavia, sul controller è già installata una chiave di licenza.</td>
</tr>
<tr>
<td>4001</td>
<td>Clear configuration command failed - configuration is already cleared (Comando di cancellazione configurazione non riuscito - La configurazione è già stata cancellata)</td>
<td>L'opzione -reset è stata utilizzata su un controller che non contiene una configurazione.</td>
</tr>
<tr>
<td>Codice di avviso</td>
<td>Messaggio di avviso</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4002</td>
<td>Chassis name is already set to this value (Nome chassis già impostato su questo valore)</td>
<td>Il nome del telaio è già impostato sul valore fornito. Il comando viene ignorato.</td>
</tr>
<tr>
<td>4003</td>
<td>One or more controller commands were skipped because the controller is not configured (Uno o più comandi del controller sono stati ignorati in quanto il controller non è configurato)</td>
<td>Prima che determinati comandi siano inviati al controller è necessario che il controller sia stato configurato.</td>
</tr>
<tr>
<td>4004</td>
<td>Using Repeat function (Utilizzo della funzione Repeat in corso)</td>
<td>Alcuni comandi sono stati ignorati in quanto nel file di input è stato specificato il parametro Repeat.</td>
</tr>
<tr>
<td>4005</td>
<td>The system must be rebooted for the firmware flash to complete (Il sistema deve essere riavviato per consentire il completamento dell'aggiornamento flash del firmware)</td>
<td>Un controller è stato aggiornato con nuovo firmware e il nuovo firmware richiede un riavvio perché l'aggiornamento abbia effetto.</td>
</tr>
<tr>
<td>4006</td>
<td>Unable to set the array accelerator for this volume. The cache board may be missing or have a bad status, or the controller may not support a cache (Impostazione dell'acceleratore di array per questo volume non riuscita. La scheda cache potrebbe non essere disponibile o non essere valida oppure il controller potrebbe non supportare una cache)</td>
<td>Il controller potrebbe non supportare una cache (come ad esempio alcuni controller RAID software) oppure la cache potrebbe essere irrintracciabile o difettosa.</td>
</tr>
</tbody>
</table>

Messaggi di errore per lo scripting HP SSA

<table>
<thead>
<tr>
<th>Codice di errore</th>
<th>Messaggio di errore</th>
<th>Commento o chiarificazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Non si è verificato alcun errore. Il programma è stato completato correttamente.</td>
</tr>
<tr>
<td>2053</td>
<td>Too many coinciding expansion, migration, or extension operations (Troppe operazioni di espansione, migrazione o estensione contemporanee)</td>
<td>La nuova configurazione richiede un numero di trasformazioni maggiore di quanto sia possibile eseguirne in una volta. Ad esempio, non è possibile eseguire allo stesso tempo l'espansione di un volume logico e la trasformazione del livello RAID.</td>
</tr>
<tr>
<td>2056</td>
<td>Controller does not support license keys (Il controller non supporta le chiavi di licenza)</td>
<td>Il controller non supporta l'immissione o l'eliminazione della chiave di licenza.</td>
</tr>
<tr>
<td>2059</td>
<td>Invalid license key (Chiave di licenza non valida)</td>
<td>La chiave di licenza immessa non è valida.</td>
</tr>
<tr>
<td>2064</td>
<td>Controller does not support SSP (Il controller non supporta SSP)</td>
<td>Il controller non supporta le funzioni SSP.</td>
</tr>
<tr>
<td>2817</td>
<td>Invalid Action (Azione non valida)</td>
<td>Le azioni richieste non sono valide, ad esempio la combinazione dell'istruzione -reset con la modalità capture.</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio di errore</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>2818</td>
<td>Invalid Method (Metodo non valido)</td>
<td>Il metodo deve essere Custom o Auto.</td>
</tr>
<tr>
<td>2819</td>
<td>Invalid Controller (Controller non valido)</td>
<td>È stato specificato un valore di controller non valido.</td>
</tr>
<tr>
<td>2821</td>
<td>No controllers detected (Nessun controller rilevato)</td>
<td>Non è stato rilevato nessun controller. Questo errore si applica solo alla modalità Input (Immissione).</td>
</tr>
<tr>
<td>2823</td>
<td>Invalid rebuild priority (Priorità di ricostruzione non valida)</td>
<td>La priorità di ricostruzione specificata non è valida.</td>
</tr>
<tr>
<td>2824</td>
<td>Invalid Expand Priority (Priorità di espansione non valida)</td>
<td>La priorità di espansione specificata non è valida. Questo errore viene generato anche se il controller non consente l'espansione e, di conseguenza, non supporta la priorità di espansione.</td>
</tr>
<tr>
<td>2825</td>
<td>Invalid Array (Array non valido)</td>
<td>L'ID array non è valido.</td>
</tr>
<tr>
<td>2826</td>
<td>Array not specified (Array non specificato)</td>
<td>Dal file di script manca il comando Array. Alcuni comandi specificati richiedono la specifica di un array.</td>
</tr>
<tr>
<td>2827</td>
<td>New Array ID does not match the next available Array ID (L'ID nuovo array non corrisponde all'ID array disponibile successivo).</td>
<td>L'ID array nel file di script non corrisponde all'ID del prossimo array disponibile. Ad esempio, se la configurazione comprende un array A e il file di input specifica array C (senza l'array B), lo script genera questo errore.</td>
</tr>
<tr>
<td>2828</td>
<td>New Array ID already exists (L'ID nuovo array esiste già)</td>
<td>Nella modalità Configure (Configura), l'ID array specificato è già presente nel file di script della configurazione. Nella modalità Configure (Configura) è possibile creare solo nuovi array.</td>
</tr>
<tr>
<td>2829</td>
<td>Cannot create Array (Impossibile creare un array)</td>
<td>Il controller non consente la creazione di un nuovo array perché al controller non sono collegate unità fisiche non assegnate oppure è già stato raggiunto il numero massimo di array o unità logiche.</td>
</tr>
<tr>
<td>2830</td>
<td>Cannot expand Array (Impossibile espandere l'array)</td>
<td>Non è possibile espandere l'array perché il controller non supporta l'espansione oppure la configurazione corrente non consente l'espansione sull'array.</td>
</tr>
<tr>
<td>2831</td>
<td>Cannot change Array Spare (Impossibile modificare unità di riserva array)</td>
<td>Non è possibile modificare lo stato di riserva dell'array. Questo errore si verifica quando si tenta di aggiungere o rimuovere un'unità di riserva e la configurazione corrente non consente la modifica dello stato di riserva per l'array.</td>
</tr>
<tr>
<td>2832</td>
<td>Invalid physical drive (Unità fisica non valida)</td>
<td>L'unità fisica specificata non è un'unità fisica valida o non può essere aggiunta all'array.</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio di errore</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2833</td>
<td>Invalid Spare (Unità di riserva non valida)</td>
<td>L'unità di riserva specificata non è un'unità di riserva valida o non può essere aggiunta all'array come unità di riserva.</td>
</tr>
<tr>
<td>2834</td>
<td>Invalid logical drive (Unità logica non valida)</td>
<td>L'ID dell'unità logica non è valido.</td>
</tr>
<tr>
<td>2836</td>
<td>New Logical Drive ID does not match the next available logical drive ID (L'ID nuova unità logica non corrisponde all'ID prima unità logica disponibile).</td>
<td>Il file di script specifica un ID dell'unità logica che non è il primo ID inutilizzato nella sequenza. Ad esempio, questo messaggio viene visualizzato se sul controller è presente solo l'unità logica 1 e il file di script specifica di creare l'unità logica 3 omettendo l'unità logica 2. Una causa comune per questo errore si trova nel file di immissione che specifica numeri di unità logiche non sequenziali. In questo caso, occorre modificare i numeri delle unità logiche in modo che risultino sequenziali nel file di immissione.</td>
</tr>
<tr>
<td>2837</td>
<td>New Logical Drive ID already exists (L'ID nuova unità logica esiste già)</td>
<td>Questo errore si verifica nella modalità Configure (Configura) quando l'ID dell'unità logica specificato è già presente nel file di script della configurazione. In modalità Configure (Configura) è possibile creare solo nuove unità logiche.</td>
</tr>
<tr>
<td>2838</td>
<td>Cannot create Logical Drive (Impossibile creare un'unità logica)</td>
<td>Sull'array non è disponibile spazio libero oppure è stato raggiunto il numero massimo di unità logiche.</td>
</tr>
<tr>
<td>2839</td>
<td>Cannot migrate Logical Drive RAID (Impossibile migrare l'unità logica RAID)</td>
<td>Il controller non supporta la migrazione RAID o l'attuale configurazione del controller non la consente.</td>
</tr>
<tr>
<td>2841</td>
<td>Cannot extend Logical Drive (Impossibile estendere l'unità logica)</td>
<td>Il controller non supporta l'estensione o l'attuale configurazione del controller non la consente. Ad esempio, l'estensione non è possibile se non è disponibile spazio libero sull'array.</td>
</tr>
<tr>
<td>2842</td>
<td>Invalid RAID (RAID non valido)</td>
<td>Il livello di RAID specificato non è valido oppure non è possibile con l'attuale configurazione di unità fisiche e array.</td>
</tr>
<tr>
<td>2843</td>
<td>Invalid Size (Dimensione non valida)</td>
<td>La dimensione specificata non è valida oppure non è possibile con l'attuale configurazione.</td>
</tr>
<tr>
<td>2844</td>
<td>Invalid Stripe Size (Dimensione dello stripe non valida)</td>
<td>La dimensione di stripe specificata non è valida, non è supportata dall'attuale livello RAID o dall'attuale configurazione.</td>
</tr>
<tr>
<td>2849</td>
<td>Invalid ClearConfigurationWithDataLoss parameter (Parametro ClearConfigurationWithDataLoss non valido)</td>
<td>I valori possibili sono Yes (Sì) e No (predefinito).</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio di errore</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2850</td>
<td>Controller does not support Chassis Name (Il controller non supporta il nome del telaio).</td>
<td>Il controller non supporta l'impostazione del nome dello chassis.</td>
</tr>
<tr>
<td>2851</td>
<td>Invalid Chassis Name (Nome chassis non valido)</td>
<td>Il nome dello chassis immesso non è valido. Utilizzare i seguenti gruppi di caratteri: a–z, A–Z, 0–9, !, @, #, *, (,), -, +, :, ., /, e [spazio]. Il nome non può terminare con uno spazio o superare il numero massimo di caratteri consentito dal controller.</td>
</tr>
<tr>
<td>2852</td>
<td>Invalid SSP State (Stato SSP non valido)</td>
<td>Lo stato SSP richiesto non è valido.</td>
</tr>
<tr>
<td>2853</td>
<td>Cannot change SSP settings (Impossibile modificare le impostazioni SSP)</td>
<td>Le impostazioni SSP non possono essere modificate per il controller o l'unità logica.</td>
</tr>
<tr>
<td>2854</td>
<td>Invalid SSP Adapter ID (ID adattatore SSP non valido)</td>
<td>L'ID adattatore rilevato dal controller non è valido.</td>
</tr>
<tr>
<td>2857</td>
<td>Invalid Surface Scan Delay (Ritardo scansione superficie non valido)</td>
<td>—</td>
</tr>
<tr>
<td>2861</td>
<td>Controller does not support redundancy settings (Il controller non supporta impostazioni di ridondanza)</td>
<td>Il controller non è ridondante o non supporta impostazioni di ridondanza.</td>
</tr>
<tr>
<td>2864</td>
<td>Invalid Preferred Path Mode (Modalità percorso preferito non valida)</td>
<td>Il valore specificato per la modalità di selezione del percorso preferito non è valido o il controller non è disponibile.</td>
</tr>
<tr>
<td>2865</td>
<td>Invalid Preferred Path (Percorso preferito non valido)</td>
<td>Il percorso preferito specificato non è uno slot del telaio valido per un controller attivo disponibile o il controller non è disponibile.</td>
</tr>
<tr>
<td>2866</td>
<td>Failure opening capture file <text> (Errore di apertura file di acquisizione <testo>).</td>
<td>—</td>
</tr>
<tr>
<td>2867</td>
<td>Failure opening input file text (Errore apertura file <testo>)</td>
<td>—</td>
</tr>
<tr>
<td>2868</td>
<td>Failure opening error file text (Errore apertura file <testo>)</td>
<td>—</td>
</tr>
<tr>
<td>2877</td>
<td>There are no suitable spares available (Non sono presenti unità di riserva adatte)</td>
<td>HP SSA ha rilevato che non è disponibile nessuna unità da utilizzare come unità di riserva per l'array specificato.</td>
</tr>
<tr>
<td>2880</td>
<td>Invalid Physical Disk Type Specified (Tipo unità fisica specificato non valido)</td>
<td>—</td>
</tr>
<tr>
<td>2882</td>
<td>Invalid MNP delay (Ritardo MNP non valido)</td>
<td>Il valore specificato per MNP non è valido.</td>
</tr>
<tr>
<td>3000</td>
<td>Invalid Option (Opzione non valida)</td>
<td>Il valore fornito per l'opzione di questo parametro non è valido.</td>
</tr>
<tr>
<td>3002</td>
<td>Command Failed (Comando non riuscito)</td>
<td>Il controller ha restituito un errore per un comando.</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio di errore</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3003</td>
<td>License Key Delete Failed (Eliminazione chiave di licenza non riuscita)</td>
<td>HP SSA non è in grado di eliminare la chiave di licenza.</td>
</tr>
<tr>
<td>3004</td>
<td>Invalid Sector Size (Dimensione dei settori non valida)</td>
<td>—</td>
</tr>
<tr>
<td>3005</td>
<td>Cannot delete Array (Impossibile eliminare l'array)</td>
<td>—</td>
</tr>
<tr>
<td>3006</td>
<td>Invalid Number of Parity Groups (Numero di gruppi di parità non valido)</td>
<td>—</td>
</tr>
<tr>
<td>3007</td>
<td>Chassis name is too long (Nome chassis troppo lungo)</td>
<td>—</td>
</tr>
<tr>
<td>3008</td>
<td>Chassis name is already in use (Nome chassis già utilizzato)</td>
<td>Un altro controller utilizza già il nome di chassis immesso.</td>
</tr>
<tr>
<td>3009</td>
<td>Auto Configure failed (Configurazione automatica non riuscita)</td>
<td>La modalità Auto Configure (Configurazione automatica) non è riuscita a completare la configurazione automatica.</td>
</tr>
<tr>
<td>3010</td>
<td>Cannot extend logical drive, not enough free space for the requested size (Impossibile estendere l'unità logica. Lo spazio libero per le dimensioni richieste non è sufficiente)</td>
<td>—</td>
</tr>
<tr>
<td>3011</td>
<td>Cannot extend logical drive, requested size is too small (Impossibile estendere l'unità logica. Le dimensioni richieste sono troppo piccole)</td>
<td>—</td>
</tr>
<tr>
<td>3012</td>
<td>Cannot specify both SIZE and SHRINKSIZE (Non è possibile specificare SIZE e SHRINKSIZE allo stesso tempo)</td>
<td>Non è possibile specificare i parametri SIZE e SHRINKSIZE allo stesso tempo nel file di input.</td>
</tr>
<tr>
<td>3013</td>
<td>Cannot shrink Array (Impossibile ridurre l'array)</td>
<td>L'operazione di riduzione dell'array non è riuscita.</td>
</tr>
<tr>
<td>3014</td>
<td>Cannot move Array (Impossibile spostare l'array)</td>
<td>L'operazione di spostamento dell'array non è riuscita.</td>
</tr>
<tr>
<td>3015</td>
<td>Invalid operation - Advanced Pack support required (Operazione non valida. È richiesto Advanced Pack)</td>
<td>L'operazione richiesta richiede l'immissione di una chiave di licenza valida.</td>
</tr>
<tr>
<td>3016</td>
<td>Spare drives cannot be specified by a count in Reconfigure mode (In modalità Reconfigure non è possibile specificare le unità di riserva)</td>
<td>In modalità Reconfigure (Riconfigurazione) le unità di riserva richieste devono essere specificate per indirizzo. Non è possibile utilizzare il semplice numero.</td>
</tr>
<tr>
<td>3017</td>
<td>Disk drives cannot be specified by a count in Reconfigure mode (In modalità Reconfigure non è possibile specificare le unità disco rigido)</td>
<td>In modalità Reconfigure (Riconfigurazione) le unità disco rigido richieste devono essere specificate per indirizzo. Non è possibile utilizzare il semplice numero.</td>
</tr>
<tr>
<td>3018</td>
<td>Invalid number of physical disks (Numero di unità fisiche non valido)</td>
<td>—</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio di errore</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>3019</td>
<td>Cannot create Array - no physical disks specified (Impossibile creare l'array. Nessuna unità fisica specificata)</td>
<td>HP SSA non è in grado di creare un array a meno che non siano specificate unità fisiche nel parametro DRIVE del file di input.</td>
</tr>
<tr>
<td>3020</td>
<td>SSP must be enabled in order to perform this operation (Per eseguire questa operazione è necessario che SSP sia abilitato)</td>
<td>Per l'operazione specificata, HP SSA richiede che SSP sia supportato e abilitato.</td>
</tr>
<tr>
<td>3021</td>
<td>Invalid connection name (Nome di connessione non valido)</td>
<td>—</td>
</tr>
<tr>
<td>3022</td>
<td>Non è possibile rimuovere connectionname quando hostmode non ha un valore diverso da quello predefinito</td>
<td>—</td>
</tr>
<tr>
<td>3023</td>
<td>Invalid Host Mode (Modalità Host non valida)</td>
<td>—</td>
</tr>
<tr>
<td>3024</td>
<td>Invalid Adapter ID (ID adattatore non valida)</td>
<td>—</td>
</tr>
<tr>
<td>3025</td>
<td>Questo controller non dispone delle funzionalità di modifica della modalità host</td>
<td>—</td>
</tr>
<tr>
<td>3026</td>
<td>You need to have administrator rights to continue (Per continuare sono necessari diritti di amministratore).</td>
<td>—</td>
</tr>
<tr>
<td>3027</td>
<td>Un'altra istanza di HP SSA è già in esecuzione (probabilmente un servizio). Chiedere l'applicazione HP SSA prima di eseguire lo scripting HP SSA.</td>
<td>—</td>
</tr>
<tr>
<td>3028</td>
<td>Invalid Drive Cache setting (Impostazione cache unità non valida). Le opzioni valide sono ENABLE e DISABLE.</td>
<td>—</td>
</tr>
<tr>
<td>3029</td>
<td>Invalid or out of order Command (Comando non valido o in ordine non corretto)</td>
<td>Verificare l'ordine dei comandi nel file di configurazione di input.</td>
</tr>
<tr>
<td>3030</td>
<td>Invalid or missing Array for Reconfigure (Array per Reconfigure (Riconfigurazione) non valido o mancante)</td>
<td>La modalità Reconfigure (Riconfigurazione) richiede un array valido.</td>
</tr>
<tr>
<td>3031</td>
<td>Invalid or missing Filename for Firmware Update (Nome file non valido o mancante per l'aggiornamento firmware)</td>
<td>Il nome file del firmware fornito non è valido.</td>
</tr>
<tr>
<td>3032</td>
<td>Firmware Update Failed (Aggiornamento firmware non riuscito)</td>
<td>L'operazione di aggiornamento flash del firmware non è riuscita.</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio di errore</td>
<td>Commento o chiarificazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>3033</td>
<td>This controller has been configured with a more recent version of software (Questo controller è stato configurato con una versione più recente del software). To prevent data loss, configuration changes to this controller are not allowed (Per prevenire una perdita dei dati, le modifiche alla configurazione del controller non sono consentite). Please upgrade to the latest version to be able to continue to configure this controller (Effettuare l'upgrade alla versione più recente per poter continuare la configurazione).</td>
<td>Alcune modifiche di SOULAPI non sono compatibili con versioni precedenti. Questa verifica evita l'uso di una versione precedente del software su un controller configurato con una versione più recente, evitando modifiche e distruzione di dati.</td>
</tr>
<tr>
<td>3034</td>
<td>Operations on this Array are temporarily unavailable while the Array is transforming (Le operazioni su questo array sono temporaneamente non disponibili mentre l'array è in fase di trasformazione).</td>
<td>L'utente ha richiesto troppe modifiche simultaneamente. Ad esempio, l'utente ha aggiunto nuovi dischi a un array (espansione della capacità dell'array) e modificato la dimensione o il livello RAID dei volumi logici sull'array. La soluzione ideale per l'utente è quella di attendere fino al completamento della trasformazione dell'array.</td>
</tr>
<tr>
<td>3035</td>
<td>Invalid value for NoBatteryWriteCache (Valore non valido per NoBatteryWriteCache).</td>
<td>Sussiste un problema con il comando NOBATTERYWRITECACHE. Verificare l'argomento fornito. Non tutti i controller supportano questa operazione.</td>
</tr>
<tr>
<td>3036</td>
<td>Cannot delete Logical Drive (Impossibile eliminare un'unità logica)</td>
<td>Si è verificato un problema nel tentativo di eliminare l'unità logica specificata. È possibile che l'unità sia in uso da parte del sistema operativo, non esista oppure non sia l'ultima unità logica sull'array.</td>
</tr>
</tbody>
</table>
Informazioni sull'utilità

Precedentemente nota come utility Array Diagnostics, la CLI dell'utilità di diagnostica HP Smart Storage Administrator raccoglie tutte le informazioni possibili sui dispositivi di memorizzazione presenti nel sistema, rileva tutti i problemi e fornisce un rapporto di configurazione dettagliato in formato .zip.

Dopo aver scaricato e installato il software è possibile eseguire l'utilità in modalità riga di comando in un ambiente in linea. La funzionalità di questa utilità viene eseguita in mirroring nelle funzioni di diagnostica di HP Smart Storage Administrator, eseguibile in un ambiente offline.

L'utilità genera due tipi di rapporti:

- **Rapporto di diagnostica sull'array**

 Questo rapporto contiene informazioni relative a tutti i dispositivi, ad esempio controller degli array, contenitori di memorizzazione, telai porta unità, unità logiche, fisiche e nastro. Per le unità a stato solido supportate, il rapporto contiene anche le informazioni relative all'utilità SmartSSD Wear Gauge.

- **Rapporto di SmartSSD Wear Gauge**

 Questo rapporto contiene le informazioni relative al livello di utilizzo corrente e alla durata attesa rimanente delle unità a stato solido collegate al sistema.

Per ulteriori informazioni, vedere "Informazioni contenute nel rapporto" (Informazioni contenute nei rapporti a pagina 102).

Informazioni contenute nei rapporti

Il rapporto di diagnostica relativo a un array fornisce informazioni dettagliate sui dispositivi (controller dell'array, contenitori di memorizzazione, telai delle unità, unità fisiche, unità logiche e unità nastro).

Ad esempio, le informazioni relative ai dispositivi su un tipico controller integrato possono comprendere:

- Versioni software
- Errori
- Informazioni sul controller
 - Nome
 - Dispositivi collegati
 - Descrizione
 - Bus PCI
Il rapporto di SmartSSD Wear Gauge contiene le informazioni relative al livello di utilizzo corrente e alla durata attesa rimanente delle unità a stato solido collegate al sistema.

Per le unità allo stato solido rilevate, la pagina di riepilogo del rapporto fornisce i seguenti totali calcolati:

- Totale SSD con stato di usura
- Totale SSD Smart Array
- Totale SSD non Smart Array
- Totale SSD SAS
- Totale SSD SATA
- Totale SSD

In aggiunta a questi totali, la pagina di riepilogo visualizza anche le seguenti tabelle:

- SSD con stato di usura
- SSD con meno di 56 giorni di vita stimati rimanenti
- SSD con meno del 2% d'utilizzo rimanente
- SSD con meno del 5% d'utilizzo rimanente
- Controller Smart Array
- Controller non Smart Array

Quando il rapporto generato viene visualizzato in un browser, la relativa pagina mostra i campi seguenti nella tabella di stato SmartSSD.
<table>
<thead>
<tr>
<th>Campo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD Wear status (Stato di usura SSD)</td>
<td>Indica lo stato di usura di una SSD accompagnato da uno dei seguenti messaggi:</td>
</tr>
<tr>
<td></td>
<td>• OK</td>
</tr>
<tr>
<td></td>
<td>• Non supportato</td>
</tr>
<tr>
<td></td>
<td>• Il log di SmartSSD Wear Gauge è pieno. I parametri di Wear Gauge non sono disponibili.</td>
</tr>
<tr>
<td></td>
<td>• L'unità SSD ha meno del 5% di utilizzo rimanente prima di esaurirsi.</td>
</tr>
<tr>
<td></td>
<td>• L'unità SSD ha meno del 2% di utilizzo rimanente prima di esaurirsi.</td>
</tr>
<tr>
<td></td>
<td>• L'unità SSD ha meno di 56 giorni (stimati) prima di raggiungere il limite massimo di utilizzo per scrittura (esaurimento) e deve essere sostituita al più presto possibile.</td>
</tr>
<tr>
<td></td>
<td>• L'unità SSD ha meno del 5% di utilizzo rimanente prima di esaurirsi. L'unità SSD ha meno di 56 giorni (stimati) prima di raggiungere il limite massimo di utilizzo e deve essere sostituita al più presto possibile.</td>
</tr>
<tr>
<td></td>
<td>• L'unità SSD ha meno del 2% di utilizzo rimanente prima di esaurirsi. L'unità SSD ha meno di 56 giorni (stimati) prima di raggiungere il limite massimo di utilizzo e deve essere sostituita al più presto possibile.</td>
</tr>
<tr>
<td></td>
<td>• L'unità SSD ha raggiunto il limite massimo di utilizzo stimato per la scrittura (esaurimento) e deve essere sostituita immediatamente.</td>
</tr>
<tr>
<td>Power Cycles (Cicli di alimentazione)</td>
<td>Indica il numero di volte in cui l'unità SSD è stata spenta e riaccesa.</td>
</tr>
<tr>
<td>Power On Hours (Ore di funzionamento)</td>
<td>Indica il numero di ore in cui l'unità SSD è rimasta accesa</td>
</tr>
<tr>
<td>Estimated Life Remaining Based On Workload To Date (Vita stimata rimanente in base al carico di lavoro per data)</td>
<td>Indica una stima del numero di giorni in cui è possibile disporre dell'unità SSD prima che l'utilizzo raggiunga il 100%. Questo campo non viene visualizzato quando l'utilizzo dell'SSD è ancora allo 0%.</td>
</tr>
<tr>
<td>Usage Remaining (Utilizzo rimanente)</td>
<td>Indica la percentuale dell'unità SSD non esaurita. L'utilizzo rimanente è pari alla differenza tra il 100% e la percentuale di utilizzo dell'unità SSD.</td>
</tr>
<tr>
<td>SSD Utilization (Utilizzo dell'unità SSD)</td>
<td>Indica la percentuale dell'unità SSD esaurita.</td>
</tr>
</tbody>
</table>

Installazione dell'utility

2. Fare clic su **Download software** (Scarica software).
3. Selezionare un sistema operativo.
4. Individuare il software e la versione preferiti, quindi fare clic su **Download**.
5. Salvare e avviare il file eseguibile.
Per impostazione predefinita, il software viene installato in C:\Programmi\HP System Tools\.

Avvio dell'utility in modalità CLI

1. Fare clic su Start>Programmi>HP System Tools>HP Smart Storage Administrator Diagnostics Utility>Read Me
2. Aprire un prompt dei comandi.
3. Cambiare la directory (cd) nella posizione in cui è installato hpaducli.exe. Normalmente la directory è C:\Programmi\Compaq\hpadu\bin.
4. Effettuare una delle seguenti operazioni:
 ◦ Generare un rapporto di diagnostica con il seguente comando:
 hpssaducli -f adu-report.zip
 ◦ Generare un rapporto SmartSSD Wear Gauge con il seguente comando:
 hpssaducli -ssd -f ssd-report.zip
Per altre opzioni, utilizzare il seguente comando:
hpssaducli -help

Procedure del rapporto di diagnostica

Visualizzazione del rapporto di diagnostica

1. Avviare l'utility (Avvio dell'utility in modalità CLI a pagina 105).
2. Individuare il file .zip creato utilizzando l'utility.
3. Aprire il file HTML per visualizzare il rapporto.

Identificazione e visualizzazione dei file contenenti i rapporti di diagnostica

L'archivio dell'output dei rapporti di diagnostica contiene i seguenti file:

- ADUReport.txt — Rapporto di diagnostica in formato testo
- ADUReport.xml — Rapporto di diagnostica in formato XML
- ADUReportViewer.htm — Visualizzatore HTML per il rapporto di diagnostica XML
- SlotX.txt (SlotX.old) — Log dell'output seriale del controller

I file di log dell'output seriale sono disponibili soltanto se HP Smart Array SAS/SATA Event Notification Service è installato e funzionante.

Per visualizzare il rapporto di diagnostica in un browser:

1. Estrarre ADUReportViewer.htm in una directory.
Procedure del rapporto di SmartSSD Wear Gauge

Visualizzazione del rapporto SmartSSD Wear Gauge

1. Avviare l'utility (Avvio dell'utility in modalità CLI a pagina 105).
2. Individuare il file .zip creato utilizzando l'utility.
3. Aprire il file HTML per visualizzare il rapporto.

Identificazione e visualizzazione dei file contenenti i rapporti SmartSSD Wear Gauge

L’archivio degli output dei rapporti di SmartSSD Wear Gauge contiene i seguenti file:

- SmartSSDWearGaugeReport.txt — Rapporto SmartSSD wear gauge in formato testo
- SmartSSDWearGaugeReport.json — Rapporto SmartSSD wear gauge in formato JSON
- SmartSSDWearGaugeReport.htm — Visualizzatore HTML per il rapporto wear gauge JSON

Per visualizzare i file del rapporto SmartSSD Wear Gauge in un browser:

1. Estrarre i seguenti file in una directory:
 - SmartSSDWearGaugeReport.json
 - SmartSSDWearGaugeReport.htm
 Tutti i file devono risiedere nella stessa directory.
2. Aprire SmartSSDWearGaugeReport.htm nel browser.
5 Array dell'unità e metodi di tolleranza agli errori

Array dell'unità

La capacità e le prestazioni di ogni unità fisica (disco rigido) è adeguata agli utenti di tipo domestico. Nelle realtà aziendali, al contrario, sono richieste capacità di memorizzazione maggiori, trasferimenti dati più rapidi e una migliore protezione contro le perdite di dati in caso di guasto all'unità.

Il collegamento di unità fisiche aggiuntive (Pn nella figura) a un sistema, aumenta la capacità totale di memorizzazione ma non ha effetto sull'efficienza delle operazioni di lettura e scrittura (R/W). In questo caso, infatti, i dati continuano a essere trasferiti a un'unità fisica alla volta.

Con un controller di array installato nel sistema, la capacità di più unità fisiche può essere combinata in una o più unità virtuali denominate unità logiche (denominate anche volumi logici e indicati con Ln nelle figure di questa sezione). Ciò consente alle testine di lettura/scrittura di tutte le unità fisiche del sistema di essere attive contemporaneamente, riducendo la quantità di tempo totale necessaria al trasferimento dei dati.
Poiché le testine di lettura e scrittura si attivano contemporaneamente, in un determinato intervallo di tempo la stessa quantità di dati viene scritta su ogni unità. Ogni unità di dati è denominata blocco (indicato con \(B_n \) nella figura) e i blocchi adiacenti formano un insieme di stripe di dati (\(S_n \)) tra tutte le unità fisiche che costituiscono l'unità logica.

I dati dell'unità logica sono leggibili solo se la sequenza dei blocchi di dati è la stessa in ogni stripe. Il processo di sequenzialità viene eseguito dal controller di array, che invia i blocchi dati alle testine di scrittura dell'unità nell'ordine corretto.

Una conseguenza ovvia del processo di striping è rappresentata dal fatto che ogni unità fisica in una determinata unità logica contiene la stessa quantità di dati. Se un'unità fisica ha una capacità maggiore rispetto alle altre unità fisiche della stessa unità logica, la capacità aggiuntiva va persa in quanto non può essere utilizzata dall'unità logica.

Il gruppo di unità fisiche contenenti l'unità logica è denominato array di unità o semplicemente array (indicato con \(A_n \) nella figura). Poiché tutte le unità fisiche di un array vengono generalmente configurate in una sola unità logica, il termine "array" è spesso utilizzato come sinonimo di unità logica. Un array può tuttavia contenere più unità logiche di dimensioni diverse.
Ogni unità logica di un array viene distribuita su tutte le unità fisiche presenti nell'array. Un'unità logica può inoltre estendersi su più porte sullo stesso controller, ma non su più controller.

I guasti delle unità, per quanto rari, sono potenzialmente molto gravi. In array configurati come illustrato nella figura precedente, il guasto di qualsiasi unità fisica causa la perdita irreversibile dei dati in ogni unità logica. Per evitare la perdita dei dati a causa di guasti delle unità fisiche, le unità logiche sono configure con ** tolleranza agli errori** (Metodi di tolleranza agli errori a pagina 110).

Per tutti i tipi di configurazione (ad eccezione di RAID 0) è possibile ottenere un'ulteriore protezione contro le perdite di dati assegnando un'**unità di riserva in linea** (o **unità di riserva a caldo**). Questa unità non contiene dati ed è collegata allo stesso controller dell'array. Quando un'unità fisica dell'array si guasta, il controller ricostruisce automaticamente nell'unità di riserva in linea le informazioni originariamente memorizzate sull'unità guasta. Il sistema viene pertanto ripristinato alla protezione dei dati con livello RAID completo, anche se non dispone più di un'unità di riserva in linea. Tuttavia, nel caso improbabile che un'altra unità dell'array subisca un guasto in fase di riscrittura nell'unità di riserva, l'unità logica subirà un altro errore.

Durante la configurazione, l'unità di riserva in linea viene automaticamente assegnata a tutte le unità logiche dello stesso array. Inoltre, non è necessario assegnare un'unità di riserva in linea separata a ogni array, ma è possibile configurare un'unità disco rigido come unità di riserva in linea per più array, se questi si trovano tutti sullo stesso controller.

Effetti di un guasto dell'unità disco rigido sulle unità logiche

Un guasto di un'unità interessa tutte le unità logiche dello stesso array. È possibile che ciascuna unità logica in un array utilizzi un metodo di tolleranza agli errori diverso, quindi può essere interessata dal guasto in modo differente.

- Le configurazioni RAID 0 non forniscono tolleranza per i guasti dell'unità. In caso di malfunzionamento di un'unità fisica nell'array, tutte le unità logiche RAID 0 presenti sull'array non funzioneranno correttamente.
- Le configurazioni RAID 10 tollerano più guasti delle unità, a condizione che non si tratti di unità con mirroring reciproco.
- Le configurazioni RAID 5 tollerano il guasto di un'unità.
Le configurazioni RAID 50 tollerano il guasto di un'unità per ogni gruppo di parità.
Le configurazioni RAID 6 tollerano il guasto contemporaneo di due unità.
Le configurazioni RAID 60 tollerano il guasto di due unità per ogni gruppo di parità.
Le configurazioni RAID 1 (ADM) e RAID 10 (ADM) tollerano più guasti delle unità a condizione che il guasto non riguardi più di due unità con mirroring l'una verso l'altra.

Metodi di tolleranza agli errori

Sono disponibili diversi metodi di tolleranza agli errori. Quelli utilizzati più frequentemente con i controller di Smart Array sono i metodi RAID basati sull'hardware.

Vengono anche descritti altri due metodi di tolleranza agli errori utilizzati in alcuni casi (Metodi alternativi di tolleranza agli errori a pagina 119). Tuttavia, i metodi RAID basati sull'hardware forniscono un ambiente di tolleranza agli errori più sicuro e controllato e per tale motivo i metodi alternativi vengono utilizzati raramente.

RAID 0 - Nessuna tolleranza agli errori

Una configurazione RAID 0 fornisce lo striping dei dati, ma non fornisce alcuna protezione dalla perdita di dati in caso di guasto di un'unità. Si tratta tuttavia di una soluzione utile per una rapida memorizzazione di grandi quantità di dati non critici, ad esempio, per la stampa o la modifica di immagini, o nel caso in cui i costi rappresentino il fattore fondamentale.

- **Vantaggi**
 - Offre le migliori prestazioni di scrittura tra tutti i metodi RAID.
 - Fornisce il costo più basso per unità di dati memorizzati tra tutti i metodi RAID.
 - L'intera capacità dell'unità viene utilizzata per la memorizzazione dei dati (nessun impiego di capacità per la tolleranza agli errori).
Svantaggi:
- In caso di guasto a un'unità fisica tutti i dati nell'unità logica vanno perduti.
- Non è possibile utilizzare unità di riserva in linea.
- I dati possono essere preservati solo eseguendo copie di backup su unità esterne.

RAID 1 e RAID 1+0 (RAID 10)

Nelle configurazioni RAID 1 e RAID 1+0 (RAID 10), i dati vengono duplicati su una seconda unità.

Quando l'array contiene solo due unità fisiche, il metodo di tolleranza agli errori è denominato RAID 1.

Quando l'array è costituito da più di due unità fisiche, il mirroring delle unità avviene a coppie e il metodo di tolleranza agli errori è denominato RAID 1+0 o RAID 10.

In ciascuna coppia di mirroring l'unità fisica che non è impegnata a rispondere ad altre richieste si occupa delle richieste di lettura inviate all'array. Questo processo è chiamato **bilanciamento del...**
Carico. In caso di guasto a un'unità fisica, l'altra unità della coppia di mirroring continua a fornire tutti i dati necessari. Anche se più unità dell'array subiscono un guasto, i dati non vanno comunque perduti, purché queste unità non appartengano alla stessa coppia di mirroring.

Questo metodo di tolleranza agli errori è utile quando le prestazioni elevate e la protezione dei dati sono più importanti dei costi delle unità disco rigido.

Vantaggi

- È il metodo che offre le seconde migliori prestazioni di lettura di ogni configurazione con tolleranza agli errori.
- Non si verifica la perdita di dati quando si guasta un'unità, purché non venga eseguito il mirroring di un'unità guasta su un'altra unità guasta.
- Il numero massimo di unità che può subire un guasto corrisponde al massimo alla metà delle unità fisiche presenti nell'array.

Svantaggi:

- È un metodo costoso poiché la tolleranza agli errori richiede molte unità.
- Solo il 50% della capacità totale delle unità è utilizzabile per la memorizzazione dei dati.

RAID 1 (ADM) e RAID 10 (ADM)

Nelle configurazioni RAID 1 (ADM) e RAID 10 (ADM), i dati vengono duplicati su due unità aggiuntive.

Quando l'array contiene solo tre unità fisiche, il metodo di tolleranza agli errori è denominato RAID 1 (ADM).

Quando l'array è costituito da più di tre unità fisiche, il mirroring delle unità avviene a gruppi di tre e il metodo di tolleranza agli errori è denominato RAID 10 (ADM).
In ciascun gruppo composto da tre unità di mirroring l'unità fisica che non è impegnata a rispondere ad altre richieste si occupa delle richieste di lettura inviate all'array. Questo processo è chiamato **bilanciamento del carico**. In caso di guasto a un'unità fisica, le altre unità del trio di mirroring continuano a fornire tutti i dati necessari. Anche se più unità dell'array subiscono un guasto, i dati non vanno comunque perduti, purché queste unità non appartengano allo stesso trio di mirroring.

Questo metodo di tolleranza agli errori è utile quando le prestazioni elevate e la protezione dei dati sono più importanti dei costi delle unità disco rigido.

Vantaggi

- È il metodo che offre le migliori prestazioni di lettura di ogni configurazione con tolleranza agli errori.
- Non si verifica la perdita di dati quando si guastano due unità, purché non venga eseguito il mirroring di due unità guaste su un'altra unità guasta.
- Il numero massimo di unità che può subire un guasto corrisponde al massimo ai due terzi delle unità fisiche presenti nell'array.

Svantaggi:

- È un metodo costoso poiché la tolleranza agli errori richiede molte unità.
- Solo un terzo della capacità totale delle unità è utilizzabile per la memorizzazione dei dati.

RAID 5 - Protezione dei dati distribuiti

Nella configurazione RAID 5, la protezione dei dati viene fornita da **dati di parità** (indicati nella figura da Px,y). I dati di parità vengono calcolati stripe per stripe dai dati dell'utente scritti su altri blocchi all'interno dello stripe. I blocchi dei dati di parità vengono distribuiti su ogni unità fisica all'interno dell'unità logica.
In caso di guasto a un'unità fisica, i dati presenti sull'unità danneggiata possono essere calcolati in base ai dati di parità rimanenti e ai dati dell'utente presenti sulle altre unità dell'array. I dati ripristinati vengono generalmente scritti in un'unità di riserva online in un processo definito **ricostruzione**.

Questo tipo di configurazione è utile quando i costi, le prestazioni e la disponibilità dei dati hanno la stessa importanza.

Vantaggi

- Elevate prestazioni di lettura.
- Nessuna perdita di dati in caso di guasto a un'unità fisica.
- È un metodo che garantisce maggiore capacità rispetto alla configurazione RAID 1+0 poiché le informazioni di parità richiedono solo lo spazio di memorizzazione corrispondente a un'unità fisica.

Svantaggi:

- Le prestazioni di scrittura sono relativamente basse.
- In caso di guasto a una seconda unità prima della ricostruzione dei dati della prima unità danneggiata possono verificarsi perdite di dati.

RAID 6 (ADG) - Protezione avanzata dei dati

Nota: Non tutti i controller supportano RAID 6 (ADG).

RAID 6 (ADG), come RAID 5, genera e archivia le informazioni di parità per fornire la protezione dalla perdita di dati causati dai guasti all'unità. Con RAID 6 (ADG), tuttavia, vengono utilizzati due tipi diversi di dati di parità (indicati nella figura da Px,y e Qx,y), consentendo la protezione dei dati nel caso di guasto a due unità. Ogni gruppo di dati di parità utilizza una capacità equivalente a quella delle unità costitutive.
Questo metodo è il più utile quando la perdita di dati è assolutamente inaccettabile e il costo costituisce un fattore importante. La probabilità che si verifichi una perdita di dati quando un array è configurato con RAID 6 (ADG) è inferiore rispetto alla configurazione con RAID 5.

Vantaggi

- Questo metodo è caratterizzato da elevate prestazioni di lettura.
- Questo metodo offre un'elevata disponibilità dei dati. Qualsiasi coppia di unità può danneggiarsi senza che ciò comporti una perdita dei dati critici.
- È un metodo che garantisce maggiore capacità rispetto alla configurazione RAID 1+0, poiché le informazioni di parità richiedono solo lo spazio di memorizzazione corrispondente a due unità fisiche.

Svantaggi:

L'unico svantaggio significativo del metodo RAID 6 (ADG) è costituito da prestazioni di scrittura relativamente basse (inferiori a RAID 5), dovute alla necessità di disporre di due insiemi di dati di parità.

RAID 50

RAID 50 è un metodo RAID nidificato nel quale le unità disco rigido che lo compongono sono organizzate in diversi gruppi uguali di unità logiche RAID 5 (gruppi di parità). La più piccola configurazione RAID 50 possibile comprende sei unità organizzate in due gruppi di parità da tre unità ciascuno.
Per ogni dato numero di unità disco rigido, la perdita di dati è meno probabile quando le unità sono disposte nella configurazione che contiene il numero maggiore possibile di gruppi di parità. Ad esempio, quattro gruppi di parità di tre unità sono più sicuri di tre gruppi di parità di quattro unità. Tuttavia, la quantità di dati che possono essere memorizzati nell'array con il numero maggiore di gruppi di parità è inferiore.

RAID 50 si rivela particolarmente utile con database di grandi dimensioni, server di file e applicazioni.

Vantaggi

- Maggiori prestazioni rispetto a RAID 5, soprattutto in scrittura.
- Migliore tolleranza agli errori rispetto a RAID 0 o RAID 5.
- Possono danneggiarsi fino a \(n \) unità fisiche (dove \(n \) è il numero di gruppi di parità) senza che si verifichino perdite di dati, sempre che le unità danneggiate si trovino in gruppi di parità diversi.

Svantaggi:

- In caso di guasto a una seconda unità nello stesso gruppo di parità prima del termine della ricostruzione dei dati della prima unità danneggiata, tutti i dati vengono persi.
- Per memorizzare i dati ridondanti e di parità viene utilizzata una capacità maggiore dell'array rispetto a metodi RAID non nidificati.

RAID 60

RAID 60 è un metodo RAID nidificato nel quale le unità disco rigido che lo compongono sono organizzate in diversi gruppi uguali di unità logiche RAID 6 (gruppi di parità). La più piccola configurazione RAID 60 possibile comprende otto unità organizzate in due gruppi di parità da quattro unità ciascuno.
Per ogni dato numero di unità disco rigido, la perdita di dati è meno probabile quando le unità sono disposte nella configurazione che contiene il numero maggiore possibile di gruppi di parità. Ad esempio, cinque gruppi di parità di quattro unità sono più sicuri di quattro gruppi di parità di cinque unità. Tuttavia, la quantità di dati che possono essere memorizzati nell'array con il numero maggiore di gruppi di parità è inferiore.

RAID 60 si rivela particolarmente utile con archivi di dati e soluzioni ad alta disponibilità.

Vantaggi

- Maggiori prestazioni rispetto a RAID 6, soprattutto in scrittura.
- Migliore tolleranza agli errori rispetto a RAID 0 o RAID 6.
- Possono danneggiarsi fino a \(n \) unità fisiche (dove \(n \) è il numero di gruppi di parità) senza che si verifichino perdite di dati, sempre che nello stesso gruppo di parità non si danneggino più di due unità.

Svantaggi:

- In caso di guasto a una terza unità nello stesso gruppo di parità prima del termine della ricostruzione di una delle unità danneggiate nel gruppo di parità, tutti i dati vengono persi.
- Per memorizzare i dati ridondanti e di parità viene utilizzata una capacità maggiore dell'array rispetto a metodi RAID non nidificati.

Confronto dei metodi RAID basati sull’hardware

Non tutti i controller supportano tutti i livelli RAID. Per supportare alcuni livelli RAID, i controller HP Smart Array G6 e G7 richiedono SAAP. ([Informazioni su SAAP a pagina 5](#)).
<table>
<thead>
<tr>
<th>Elemento</th>
<th>RAID 0</th>
<th>RAID 1+0</th>
<th>RAID 5</th>
<th>RAID 6 (ADG)</th>
<th>RAID 1(0) (ADM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula per il numero di unità utilizzabili per i dati ($n = numero totale di unità nell'array$)</td>
<td>n</td>
<td>$n/2$</td>
<td>$n-1$</td>
<td>$n-2$</td>
<td>$n/3$</td>
</tr>
<tr>
<td>Percentuale di spazio unità utilizzabile*</td>
<td>100%</td>
<td>50%</td>
<td>Da 67% a 93%</td>
<td>Da 50% a 96%</td>
<td>33%</td>
</tr>
<tr>
<td>Numero minimo di unità fisiche</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Tollera il guasto di un'unità fisica</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tollera il guasto contemporaneo di più unità fisiche</td>
<td>No</td>
<td>Solo se le due unità danneggiate non appartengono alla stessa coppia di mirroring</td>
<td>No</td>
<td>Yes</td>
<td>Solo se le tre unità danneggiate non appartengono allo stesso gruppo di mirroring**</td>
</tr>
<tr>
<td>Prestazione di lettura</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Prestazione di scrittura</td>
<td>Alto</td>
<td>Medio</td>
<td>Basso</td>
<td>Basso</td>
<td>Medio</td>
</tr>
<tr>
<td>Costo relativo</td>
<td>Basso</td>
<td>Alto</td>
<td>Medio</td>
<td>Medio</td>
<td>Molto alto</td>
</tr>
</tbody>
</table>

* I valori della percentuale di spazio utilizzabile dell’unità vengono calcolati tenendo conto delle seguenti ipotesi: (1) tutte le unità fisiche dell’array hanno la stessa capacità; (2) non sono utilizzate unità di riserva in linea; (3) per il metodo RAID 5, non vengono utilizzate più di 14 unità fisiche per array; (4) per il metodo RAID 6 (ADG), non vengono utilizzate più di 56 unità fisiche.

** I gruppi di mirroring includono le unità fisiche di ogni mirror.

Selezion di un metodo RAID

Non tutti i controller supportano tutti i livelli RAID. Per determinare le funzionalità RAID del controller, vedere le informazioni specifiche sui modelli supportati da un determinato controller sul sito Web HP (http://www.hp.com/products/smartarray).

<table>
<thead>
<tr>
<th>Criterio principale</th>
<th>Ulteriori Fattori Importanti</th>
<th>Livello RAID consigliato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault tolerance (Tolleranza agli errori)</td>
<td>Ottimo rapporto qualità-prezzo</td>
<td>RAID 6</td>
</tr>
<tr>
<td>Prestazioni di I/O</td>
<td>RAID 10 (ADM), RAID 1+0, RAID 50, RAID 60</td>
<td></td>
</tr>
<tr>
<td>Ottimo rapporto qualità-prezzo</td>
<td>Fault tolerance (Tolleranza agli errori)</td>
<td>RAID 6</td>
</tr>
<tr>
<td>Prestazioni di I/O</td>
<td>RAID 5 (RAID 0 se la tolleranza agli errori non è richiesta)</td>
<td></td>
</tr>
<tr>
<td>Prestazioni di I/O</td>
<td>Ottimo rapporto qualità-prezzo</td>
<td>RAID 5 (RAID 0 se la tolleranza agli errori non è richiesta)</td>
</tr>
<tr>
<td>Fault tolerance (Tolleranza agli errori)</td>
<td>RAID 10 (ADM), RAID 1+0, RAID 50, RAID 60</td>
<td></td>
</tr>
</tbody>
</table>
Metodi alternativi di tolleranza agli errori

Il sistema operativo può supportare anche duplex di controller o metodi RAID basati sul software.

- **Il RAID basato su software** è simile al RAID basato sull'hardware, ma il sistema operativo opera con le unità logiche come se queste fossero unità fisiche. Per proteggere i dati da eventuali perdite provocate dal guasto di unità fisiche, le unità logiche deve trovarsi su array diversi.

- **Il duplex del controller** utilizza due controller identici con insiemi di unità identici e indipendenti che contengono gli stessi dati. Nel caso improbabile di guasto a un controller, il secondo controller e le unità sono in grado di gestire tutte le richieste.

Nessuno di questi metodi alternativi di tolleranza agli errori supporta unità di riserva in linea o il ripristino automatico dei dati né il controllo automatico dell'affidabilità o il ripristino temporaneo dei dati.

Se si intende utilizzare uno di questi metodi alternativi di tolleranza agli errori, configurare gli array con il metodo RAID 0 per ottenere la massima capacità di memorizzazione e consultare la documentazione del sistema operativo in uso per ulteriori informazioni sull'implementazione.
6 Diagnosi dei problemi degli array

Strumenti di diagnostica

Per risolvere i problemi relativi agli array e generare rapporti su di essi, utilizzare i seguenti strumenti di diagnostica:

- **Servizio di notifica degli eventi**
 Questa utility invia gli eventi dell'array al registro degli eventi di sistema di Microsoft® Windows® e al registro IML. Questa utility è disponibile sul CD SmartStart o sul sito Web HP (http://www.hp.com/support). Immettere il nome del modello del server quando vengono richieste le informazioni di prodotto.

- **HP Insight Diagnostics**
 HP Insight Diagnostics è uno strumento che visualizza informazioni sulla configurazione dell'hardware del sistema ed esegue test sul sistema e sui relativi componenti (incluse le unità se sono connesse a controller Smart Array) Questa utility è disponibile sul CD SmartStart e sul sito Web HP (http://www.hp.com/support). Per ulteriori informazioni, vedere “Informazioni su HP SSA a pagina 6”.

- **Messaggi POST**
 Al riavvio, i controller Smart Array generano messaggi di errore di diagnostica (errori POST). Molti messaggi POST suggeriscono le azioni correttive. Per ulteriori informazioni sui messaggi POST, consultare la *HP ProLiant Servers Troubleshooting Guide* (Guida alla risoluzione dei problemi dei server HP ProLiant).

- **HP Smart Storage Administrator**
 Per i prodotti più recenti, la diagnostica di array è disponibile con HP SSA v9.0 e versioni successive. Questa utility è disponibile attraverso HP Intelligent Provisioning nei server HP ProLiant Gen8 e successivi, nonché sul sito Web HP (http://www.hp.com/support). Per ulteriori informazioni su HP SSA, vedere “Informazioni su HP SSA” (Informazioni su HP SSA a pagina 6). Per ulteriori informazioni sui messaggi di errore, vedere la *Guida alla risoluzione dei problemi dei server HP ProLiant*.

- **CLI dell'utilità di diagnostica HP Smart Storage Administrator**
 Questa utility di diagnostica standalone fornisce informazioni su configurazioni ed errori (controller dell'array, contenitori di memorizzazione, HBA, telai delle unità,单元 logiche, unità fisiche e unità nastro). Per alcune unità SSD supportate, l'utilità fornisce il livello di utilizzo corrente e la durata attesa rimanente. Per ulteriori informazioni, vedere "CLI dell'utilità di diagnostica HP Smart Storage Administrator" (CLI dell'utilità di diagnostica HP Smart Storage Administrator a pagina 102).

Risorse per la risoluzione dei problemi

Prodotti HP ProLiant G7 (e versioni superiori)

Nella *Guida alla risoluzione dei problemi dei server HP ProLiant* sono riportate semplici procedure per la risoluzione dei problemi comuni e istruzioni complete per isolare e identificare errori, interpretare messaggi di errore, risolvere problemi ed eseguire la manutenzione del software sui server e sui server blade ProLiant. Per consentire agli utenti di orientarsi con facilità tra i diversi processi di
risoluzione dei problemi, nella Guida sono inclusi diagrammi di flusso specifici del problema. Per visualizzare la Guida, selezionare una lingua:

- Inglese (http://www.hp.com/support/ProLiant_TSG_en)
- Francese (http://www.hp.com/support/ProLiant_TSG_fr)
- Italiano (http://www.hp.com/support/ProLiant_TSG_it)
- Spagnolo (http://www.hp.com/support/ProLiant_TSG_sp)
- Tedesco (http://www.hp.com/support/ProLiant_TSG_gr)
- Olandese (http://www.hp.com/support/ProLiant_TSG_nl)
- Giapponese (http://www.hp.com/support/ProLiant_TSG_jp)

Prodotti HP ProLiant Gen8

Nella *HP ProLiant Gen8 Troubleshooting Guide, Volume I: Troubleshooting* (Guida alla risoluzione dei problemi di HP ProLiant Gen8, Volume I: Risoluzione dei problemi) sono riportate le procedure per la risoluzione dei problemi comuni e le istruzioni complete per isolare e identificare gli errori, risolvere i problemi ed eseguire la manutenzione del software sui server e sui server blade ProLiant. Per visualizzare la Guida, selezionare una lingua:

- Inglese (http://www.hp.com/support/ProLiant_TSG_v1_en)
- Francese (http://www.hp.com/support/ProLiant_TSG_v1_fr)
- Spagnolo (http://www.hp.com/support/ProLiant_TSG_v1_sp)
- Tedesco (http://www.hp.com/support/ProLiant_TSG_v1_gr)
- Giapponese (http://www.hp.com/support/ProLiant_TSG_v1_jp)
- Cinese semplificato (http://www.hp.com/support/ProLiant_TSG_v1_sc)

La *HP ProLiant Gen8 Troubleshooting Guide, Volume I: Error Messages* (Guida alla risoluzione dei problemi di HP ProLiant Gen8, Volume I: Messaggi di errore) contiene un elenco di messaggi di errore e informazioni che consentono di interpretare e risolvere i messaggi di errore dei server ProLiant e dei server blade. Per visualizzare la Guida, selezionare una lingua:

- Inglese (http://www.hp.com/support/ProLiant_EMG_v1_en)
- Francese (http://www.hp.com/support/ProLiant_EMG_v1_fr)
- Spagnolo (http://www.hp.com/support/ProLiant_EMG_v1_sp)
- Tedesco (http://www.hp.com/support/ProLiant_EMG_v1_gr)
- Giapponese (http://www.hp.com/support/ProLiant_EMG_v1_jp)
- Cinese semplificato (http://www.hp.com/support/ProLiant_EMG_v1_sc)
7 Acronimi e abbreviazioni

ACU
Array Configuration Utility (Utility di configurazione dell'array)

ADG
Advanced Data Guarding (Noto anche come RAID 6)

ADM
Advanced Data Mirroring

ADU
Array Diagnostic Utility, Utility di diagnostica array

BPP
Bit per pixel

CPQONLIN
Utility NetWare Online Array Configuration (Configurazione in linea di array su server NetWare)

HBA
Host Bus Adapter (Adattatore bus host)

HP SSA
HP Smart Storage Administrator

LUN
Logical unit number

ORCA
Option ROM Configuration for Arrays (Configurazione ROM facoltativa per array)

POST
Power-On Self-Test (autotest all'accensione)

PXE
Preboot Execution Environment

RBSU
ROM-Based Setup Utility (Utility di configurazione basata su ROM)

RIS
Reserve Information Sector (Settore di informazioni di riserva)

SAAP
Smart Array Advanced Pack

SAS
Serial Attached SCSI (SCSI su connessione seriale)

SATA
Serial ATA

SSP
Selective Storage Presentation (Presentazione della memorizzazione selettiva)

TFTP
Trivial File Transfer Protocol (Protocollo di trasferimento dei file semplice)

WBEM
Web-Based Enterprise Management

WWN
World Wide Name (Nome universale)
8 Commenti sulla documentazione

HP si impegna a fornire una documentazione che soddisfi le esigenze degli utenti. Per consentire di migliorare la documentazione, inviare errori, suggerimenti o commenti a Documentation Feedback (mailto:docsfeedback@hp.com). Con il commento, includere anche il titolo del documento, il numero di parte, il numero di versione o l'URL.
Indice analitico

A
Abbreviazioni CLI 48
Abbreviazioni delle parole chiave 48
Acquisizione delle configurazioni 72
ADG (Protezione dei dati avanzata) 114
Array in mirroring 38
Array, creazione, scripting HP SSA
 Array 82
 Unità 82
Array, espansione, scripting HP SSA 82
Array, riduzione
 Esecuzione di un'attività di configurazione 26
 Riduzione di un array 65
 Unità 82
Array, riduzione, scripting HP SSA 82
Array, riparazione 41
Array, sostituzione
 Sostituzione di un array 42, 66
Array, specificazione e creazione, HPSSASCR(IPTIONING 82
Array, specificazione, scripting HP SSA 82
Array, spostamento
 Spostamento di un array 65
 Unità 82
Array, spostamento, scripting HP SSA 82
ArrayAccelerator 85
Attivazione dei supporti virtuali
 Attivazione dell'immagine mediante iLO 8
 Attivazione dell'immagine su un'unità locale 8
 Installazione dell'immagine su un server PXE 9
 Masterizzazione dell'immagine su CD o DVD 8
 Memorizzazione dell'immagine su un'unità USB o scheda SD 9
 Attivazione della cache dell'unità 71
 Attività
 Attività di configurazione 22
 Attività di diagnostica 42
 Esecuzione di un'attività di configurazione 26
 Esecuzione di un'attività di diagnostica 43
 Attività di configurazione avanzate, supportate 2
 Attività di configurazione standard, supportate 2
 Attività di configurazione, avanzate, supportate 2
 Attività di configurazione, esecuzione
 Esecuzione di un'attività di configurazione 26
 Procedure tipiche 52
 Utilizzo di uno script di immissione 73
 Attività di configurazione, standard, supportate 2
 Attività supportate 2
 Attività supportate per ogni utility 2
B
Backup del mirroring di suddivisione 39
C
Cache dell'unità, attivazione o disattivazione
 Attivazione o disattivazione della cache dell'unità 71
 DriveWriteCache 79
 Cache di scrittura dell'unità fisica, attivazione o disattivazione 71
 Cache di scrittura su unità fisiche, attivazione o disattivazione 71
 CacheState 79
 Cancellazione di un'unità 56
 Cancellazione di una configurazione 79
 ClearConfigurationWithDataLoss 79
 CLI (Interfaccia della riga di comando) 44
 CLI, accesso
 Accesso ad HP SSA in ambiente offline 7
 Accesso ad HP SSA in ambiente online 12
 Avvio dell'utility in modalità CLI 105
 CLI, sintassi 46
 Comando help 51
 Comando shorthand nella CLI 48
 Concetti di array
 Array dell'unità 107
 Array dell'unità e metodi di tolleranza agli errori 107
 Concetti di array di unità
 Array dell'unità 107
 Array dell'unità e metodi di tolleranza agli errori 107
 Configurazione di array, copia
 Acquisizione di una configurazione 72
 Creazione di un file di script HP SSA 73
 Configurazione PXELinux 10
 Confronto delle caratteristiche RAID 117
 Confronto delle utility 1
 ConnectionName 90
 Contenitori, informazioni 61
 Controller di avvio, impostazione 52
 Controller in standby, disabilitazione 69
 Controller ridondante, disabilitazione 69
Controller ridondante, impostazioni del percorso preferito
Assegnazione di un controller ridondante a un'unità logica 68
Impostazione della modalità di selezione del percorso preferito 68
PreferredPath 86
PreferredPathMode 79
Controller ridondante, modifica del percorso di I/O
Assegnazione di un controller ridondante a un'unità logica 68
Impostazione della modalità di selezione del percorso preferito 68
PreferredPath 86
PreferredPathMode 79
Controller, specificazione di HPSSAScripting 78
Controller, specificazione, scripting HP SSA 78
Criteri per selezionare un livello RAID. 118

D
Dati, stripe
Array dell'unità 107
RAID 0 - Nessuna tolleranza agli errori 110
DeleteLicenseKey 79
Descrizione della schermata
Esplorazione dell'interfaccia utente 17
Guida di HP SSA 22
Schermata Configure (Configura) 20
Schermata Diagnostics (Diagnostica) 21
Diagnostica
Attività di diagnostica 42
Esecuzione di un'attività di diagnostica 43
Generazione di un rapporto di diagnostica 55
Schermata Diagnostics (Diagnostica) 21
Dimensione 88

E
Disabilitazione del controller ridondante 69
Disattivazione della cache dell'unità 71
Dispositivi, identificazione 55
Dispositivi, rilevamento 17
Dispositivo target, impostazione
Impostazione del target 52, 53
DPOEnable 81
DriveType 83
DriveWriteCache 79
Duplex 119
Duplex del controller 119

ElevatorSortEnable 81
Eliminazione dispositivo 55
Esempio, script CLI, creazione di unità logiche 58
Espansione di un array
Espansione di un array 64
Unità 82
Espansione di un array, scripting
HP SSA 82
Estensione della capacità dell'unità logica
Estensione di un'unità logica 67
Size 88
ExpandPriority 80

F
F5, prompt 7
File di output XML 90
File di script 73
Forced, parametro 47
Funzionalità delle utility 1

G
GUI, accesso
Accesso ad HP SSA in ambiente offline 7
Accesso ad HP SSA in ambiente online 12

H
HBA WWN 90
HBA_WW_ID 90
HostMode 90

HP SmartCaching
Enable HP SmartCache (Abilita HP SmartCache) 35
Informazioni su HP SmartCache 35
SmartCache in HPSSACL 62

I
Identificazione dei dispositivi 55
Immagine ISO
Attivazione dell'immagine mediante iLO 8
Attivazione dell'immagine su un'unità locale 8
Avvio di HP SSA da un'immagine ISO (tutte le generazioni) 7
Installazione dell'immagine su un server PXE 9
Masterizzazione dell'immagine su CD o DVD 8
Memorizzazione dell'immagine su un'unità USB o scheda SD 9
Implementazione online 12
Impostazione di PXELinux 10
Impostazione MaxBoot 88
Informazioni sui dispositivi, visualizzazione 48
Informazioni sulle unità
Visualizzazione delle informazioni sulle unità SSD 62
Visualizzazione delle unità fisiche SSD 61
Visualizzazione di unità fisiche per un HBA 61
Informazioni supplementari 120
Intelligent Provisioning 7
Interfaccia della riga di comando (CLI) 44
Interrogazione di un dispositivo 47
IRPEnable 81

J
Join 83

L
LED, attivazione 55
LicenseKey 79
Lingue 1
Livelli RAID, confronto delle caratteristiche 117
Livello RAID, criteri di selezione 118

M
Messaggi di avviso 94
Messaggi di errore 95
messaggi di errore POST 120
Metodi di protezione dei dati
Metodi alternativi di tolleranza agli errori 119
Metodi di tolleranza agli errori 110
Metodi di tolleranza agli errori Array dell'unità e metodi di tolleranza agli errori 107
Metodi di tolleranza agli errori 110
Migrazione del livello RAID
Migrazione di un'unità logica 67
RAID 86
Migrazione del livello RAID script HPSA 86
Migrazione della dimensione di stripe o del livello RAID, scripting HP SSA
RAID 86
StripeSize 88
Migrazione della dimensione di stripe, scripting HP SSA 88
Mirroring di unità
RAID 1 (ADM) e RAID 10 (ADM) 112
RAID 1 e RAID 1+0 (RAID 10) 111
MNPDelay 81
Modalità di scripting 72
Modality Host 90
Modalità Method, scripting HP SSA 77

N
Navigazione dell'interfaccia 17
NoBatteryWriteCache 79
Nome controller 63
Nome di connessione 90
Novell NetWare, strumento di configurazione per 4
NumberOfParityGroups 86

O
Offline, implementazione 7
OnlineSpare
OnlineSpare 84
OnlineSpareMode 84
Opzione Spare management
Modalità di gestione delle unità di riserva in HPSSACLI 64
Modifica della modalità di gestione delle unità di riserva 31
Opzioni, scripting, elenco di 75

P
Panoramica delle utility di configurazione 4
Parametri in CLI, identificazione dei valori 47
Parità, gruppi
NumberOfParityGroups 86
RAID 50 115
RAID 60 116
Percorso di I/O, modifica
Assegnazione di un controller ridondante a un'unità logica 68
Impostazione della modalità di selezione del percorso preferito 68
PreferredPathMode 79
Percorso immagine ISO, specificazione 11
Predefinite, impostazioni 74
PreferredPath 86
PreferredPathMode 79
Profilo di connessione 90
Protezione dei dati avanzata
(ADG) 114
Protezione dei dati distribuiti 113
PXE, implementazione basata su 10

Q
QueueDepth 81

R
RAID 86
RAID nidificato
RAID 50 115
RAID 60 116
RAID, basato sul software 119
RAID, livelli
Metodi di tolleranza agli errori 110
RAID 0 - Nessuna tolleranza agli errori 110
RAID 1 (ADM) e RAID 10 (ADM) 112
RAID 1 e RAID 1+0 (RAID 10) 111
RAID 5 - Protezione dei dati distribuiti 113
RAID 50 115
RAID 6 (ADG) - Protezione avanzata dei dati 114
RAID 60 116
RaidArrayId 80
Rapid Parity Initialization (Inizializzazione rapida della parità)
Metodi di Rapid Parity Initialization (Inizializzazione rapida della parità) 62
Rapid Parity Initialization (Inizializzazione rapida della parità) 29
Rapporto di diagnostica
Attività di diagnostica 42
Esecuzione di un'attività di diagnostica 43
Generazione di un rapporto di diagnostica 55
Identificazione e visualizzazione dei file contenenti i rapporti di diagnostica 105
Procedure del rapporto di diagnostica 105
Visualizzazione del rapporto di diagnostica 105
Rapporto di SmartSSD Wear Gauge
Esecuzione di un'attività di diagnostica 43
Identificazione e visualizzazione dei file

ITWW Indice analitico 127
contenenti i rapporti
SmartSSD Wear Gauge 106
Procedure del rapporto di
SmartSSD Wear Gauge 106
Visualizzazione del rapporto
SmartSSD Wear Gauge 106
Re-mirroring di un backup del
mirroring di suddivisione 40
ReadCache 80
RebuildPriority 80
Registrazione della chiave di
licenza 37
Renumber 87
Repeat 87
repeat, configurazione 87
Rescan
Esplorazione dell'interfaccia
utente 17
Riscansione del sistema 56
ResourceVolumeOwner 87
Riabilitazione di un'unità logica
guasta 71
Ricombinazione di un array di
mirroring suddiviso 39
Ridenominazione di un controller 63
Riduzione di un array
Esecuzione di un'attività di
configurazione 26
Riduzione di un array 65
Unità 82
Riparazione di un array 41
Risoluzione problemi
Diagnosi dei problemi degli
array 120
Risorse per la risoluzione dei
problem 120
Strumenti di diagnostica 120
Risorse di assistenza 22
Risorse, risoluzione problemi 120
Ritardo di scansione superficie
Modifica del ritardo di
scansione della superficie 70
SurfaceScanDelay 80
S
Scansione superficie, modalità 70
Scelta di un livello RAID 118
Script di esempio 74
Script di immissione, utilizzo 73
Script, opzioni 75
Scripting con ACU
Categorie Array 81
Categorie Controller 78
Categorie HBA 89
Sectors 88
Selezione di un livello RAID 118
Server remoto, configurazione 13
Show (comando CLI) 48
ShrinkSize 88
Sintassi CLI 46
Sintassi di scripting 73
Sistemi operativi supportati 11
SizeBlocks 88
Smart Array Advanced Pack
(SAAP) 5
Software, RAID basato sul 119
Sostituzione di un array
Sostituzione di un array 42, 66
Split 84
Spostamento di un array
Spostamento di un array 65
Unità 82
Stripe dei dati
Array dell'unità 107
RAID 0 - Nessuna tolleranza
gli errori 110
StripeSize 88
StripSize 89
strumenti di diagnostica 120
Suddivisione di un array di
mirroring 38
Supporto per XML 90
Supporto sistema operativo 6
SurfaceScanDelay 80
SurfaceScanDelayExtended 80
SurfaceScanMode 81
T
Tipo unità, scripting HP SSA 83
Unità di riserva in linea,
HPSSASCRIPTING 84
Unità di riserva in linea, scripting
HP SSA 84
Unità di riserva, modalità di
attivazione
Impostazione della modalità di
attivazione unità di riserva 64
Modifica della modalità di
attivazione unità di riserva 30
Unità di riserva, scripting HP
SSA 84
Unità in mirroring
RAID 1 (ADM) e RAID 10
(ADM) 112
RAID 1 e RAID 1+0 (RAID 10) 111
Unità logica guasta,
riabilitazione 71
Unità logica, cache
CachedLogicalDrive 86
CachingLogicalDrive 85
LogicalDrive 85
Unità logica, descrizione 107
Unità logica, estensione della
capacità
Dimensione 88
Estensione di un'unità logica 67
Unità logica, guasta,
riabilitazione 71
Unità logica, migrazione, scripting
HP SSA
RAID 86
StripeSize 88
U
Unità logica, spostamento, CLI di
HP SSA 60
Uscita in seguito a errore 72
Utility di configurazione array,
caratteristiche 1
Utility di configurazione,
confronto 1
Utility di configurazione,
descrizione 4
Utility di configurazione, scelta 4
Utility, descrizione di 4
V
Valori dimensioni di stripe 88
version command 51
Video, ottimizzazione delle prestazioni
 Opzioni relative alle prestazioni video 81
 Ottimizzazione delle prestazioni del controller per il video 57
Visualizzazione, informazioni dispositivo 48
Volume di avvio, impostazione 52

W
WriteCache 80

X
XML, DTD 93
XML, file di input 92