

Intel® Ethernet QSFP+ Optics

QSFP+ 40GBASE-SR4 and 40GBASE-LR4 Optics for Intel® Ethernet Network Adapters

Key Features

- Support for 40GBASE Ethernet
- Hot-swappable 40GbE I/O transceiver that plugs into a QSFP+ port
- Supports the 4x10 GbE mode to connect to four 10GBASE-SR or 10GBASE-LR optical interfaces
- Four channel, full duplex transceiver module
- Single MPO receptacle (SR)
- Single LC receptacle (LR)
- Maximum power dissipation
 1.5 W SR4;
 3.5 W LR4
- RoHS-6 compliant (lead-free)
- Commercial temperature range 0-70 °C
- Maximum link length 10 km on Single Mode Fiber (SMF)
- Maximum link length 100 m on Multimode Fiber (MMF)
- 1.06 Gb/s to 10.5 Gb/s per channel multi-rate capability
- Compatible with Intel® Ethernet Network Adapters

Overview

Intel® Ethernet QSFP+ Optics offer customers an efficient way to move to 40GbE for high bandwidth application requirements such as content distribution, high-end virtualization using multiple CPUs, network appliances, and Applications Delivery Controllers (ACD). When used with the Intel® Ethernet Network Adapter XL710, these optics support either 40GbE or 4x10GbE mode for four 10GBASE-SR or 10GBASE-LR optical interfaces.

To ensure maximum flexibility, Intel supports the ability to use either Intel® Ethernet QSFP+ Optics or direct attach twinaxial cables. This helps customers create the configuration that best meets the needs of their data center environment, while ensuring compatibility between adapter and accessories.

General Specifications	
Module Form Factor	QSFP+
Network Standards Physical Layer Interface	40GBASE-SR4 and 40GBASE-LR4 (4 x 10 GbE and 1 x 40 GbE)
QSFP+ Module Specifications	 INF-8438i Specification for QSFP (Quad Small Form factor Pluggable) Transceiver SFF-8436 – Specification for QSFP+ Copper and Optical Transceiver IEEE 802.3ba – PMD Type 40GBASE-SR4 or 40GBASE-LR4
Number of Lanes	4 Tx and 4 Rx
Airflow and Temperature Guidelines	Refer to adapter product brief for specific airflow and temperature requirements ¹

NOTE: When two Intel® Ethernet Network Adapter X520 and XL710 Series QSFP+ devices are connected back to back, they should be configured with the same Speed/Duplex setting. Results may vary if speed settings are mixed.

Product Order Code

E40GQSFPSR E40GQSFPLR

SR4 Optical Characteristics

 $(T_{OP} = 0 \, ^{\circ}\text{C to } 70 \, ^{\circ}\text{C}, \, \text{VCC} = 3.15 \, \text{to } 3.45 \, \text{V})$

Parameter	Symbol	Min	Тур	Max	Unit	Note
Transmitter (per Lane)						
Signaling Speed per Lane			10.5		Gb/s	1
Center Wavelength		840		860	nm	
RMS Spectral Width	SW			0.65	nm	
Average Launch Power per Lane	TXP_x	-7.6		-1.0	dBm	
Transmit OMA per Lane	TxOMA	-5.6		3.0	dBm	2
Difference in Power between any two lanes (OMA)	DP_x			4.0	dB	
Peek Power per Lane	PP_{x}			4.0	dBm	
Launch Power (OMA) minus TDP per Lane	P-TDP	-6.5			dBm	
TDP per Lane	TDP			3.5	dBm	
Optical Extinction Ratio	ER	3.0			dB	
Optical Return Loss Tolerance	ORL			12	dB	
Encircled Flux	FLX		> 86% at 19 um < 30% at 4.5 um		dBm	
Average launch power of OFF transmitter per lane				-30	dBm	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter eye mask definition (X1, X2, X3) (Y1, Y2, Y3)			0.23, 0.34, 0.43 0.27, 0.35, 0.4			

- Transmitter consists or four lasers operating at a maximum rate of 10.5 Gb/s each.
 Even if TDP is < 0.9 dB, the OMA min must exceed this value.

SR4 Optical Characteristics (Continued)

 $(T_{OP} = 0 \text{ °C to } 70 \text{ °C, VCC} = 3.15 \text{ to } 3.45 \text{ V})$

Parameter	Symbol	Min	Тур	Max	Unit	Note
Receiver (per Lane)						
Signaling Speed per Lane			10.5		GBd	1
Center Wavelength		840		860	nm	
Damage Threshold	DT	3.4			dBm	
Average Receive Power per Lane	RXP_x	-9.5		2.4	dBm	
Receive Power (OMA) per Lane	RxOMA			3.0	dBm	
Stressed Receiver Sensitivity (OMA) per Lane	SRS			-5.4	dBm	
Peak Power per Lane	PP_{x}			4	dBm	
Receiver Reflectance	Rfl			-12	dB	
Loss of Optic Signal (LOS) De-Assert	LOS _D			-12	dBm	
Loss of Optic Signal (LOS) Assert	LOS _A	-30			dBm	
Loss of Optic Signal (LOS) Hysteresis		0.5			dBm	

^{1.} Receiver consists of four photodetectors operating at a maximum rate of 10.5 Gb/s each.

Note
1
2
3
4

- Notes: 1. From power-on and end of any fault conditions. 2. After internal AC coupling. Self-biasing 100Ω differential input. 3. 10 MHz to 11.1 GHz range. 4. Hit ratio = $5 \times 10\text{E-}5$. Valid for all settings in Figure 1.

SR4 Electrical Characteristics (Continued)

 $(T_{OP} = 0 \, ^{\circ}\text{C to } 70 \, ^{\circ}\text{C}, \text{VCC}=3.15 \text{ to } 3.45 \, \text{V})$

Parameter		Symbol	Min	Тур	Max	Unit	Note
Receiver (per Lane)							
Single-ended output voltage			-0.3		4.0	V	
Differential data output swing		Vout,pp	0		800	mVpp	1, 2
AC common mode output voltage (RMS)					7.5	mV	
Termination mismatch at 1 MHz					5	%	
Differential output return loss			Per IEEE P802.3ba, Section 86A.4.2.1			dB	3
Common mode output return loss			Per IEEE P802.3ba, Section 86A.4.2.2			dB	3
Output transition time, 20% to 8	0%		28			ps	
J2 Jitter output		Jo2			0.42	UI	
J9 Jitter output	9 Jitter output				0.65	UI	
Eye mask coordinates #1	(X1, X2) (Y1, Y2)			0.29, 0.5 150, 425		UI mV	4
Eye mask coordinates #2	(X1, X2) (Y1, Y2)			0.29, 0.5 125, 500		UI mV	5
Power Supply Ripple Tolerance		PSR	50			mVpp	

Notes:

- 1. AC coupled with 100Ω differential output impedence. 2. Settable in four diecrete steps via the I^2C interface. See Figure 1 for Vout setting. 3. 10 MHz to 11.1 GHz range.
- 4. Hit ratio = $5 \times 10E-5$. Valid only for the shaded setting in Figure 1. 5. Hit ratio = $5 \times 10E-5$. Valid for all settings in Figure 1.

Power (mW)		Pre-Emphasis into 100 Ohms (mV)						
		0	125	175	325			
	0 599							
Volt (mV)	317	751	935	971	1075			
/olt	422	787	971	1007	1111			
	739	883	1055	1103	1190			

Figure 1 - Power Dissipation (mW, maximum) vs. Rx Output Conditions

LR4 Optical Characteristics

 $(T_{OP} = 0 \, ^{\circ}C \text{ to } 70 \, ^{\circ}C, VCC = 3.1 \text{ to } 3.47 \text{ V})$

Symbol	Min	Тур	Max	Unit	Note
			10.3125	Gb/s	1
		1264.5 - 1277.5 1284.5 - 1297.5 1304.5 - 1317.5 1324.5 - 1337.5		nm	
P_out			8.3	dBm	
TxOMA	-4.0		3.5	dBm	
TPX_X	-7.0		2.3	dBm	2
ER	3.5			dB	
$SSRP_{MIN}$	30			dB	
			-30	dBm	
RIN			-128	dB/Hz	3
			20	dB	
			-12	dB	
		0.25, 0.4, 0.45 0.25, 0.28, 0.4			
			10.3125	GBd	4
		1264.5 - 1277.5 1284.5 - 1297.5 1304.5 - 1317.5 1324.5 - 1337.5		nm	
RxOMA			3.5	dBm	
RXP_X	-13.7		2.3	dBm	5
Rxsens			-11.5	dBm	
SRS			-9.6	dBm	
P_{MAX}			3.4	dBm	
RL	·		-26	dB	
			1.9	dB	
			12.3	GHz	
LOS _D			-12	dBm	
LOS _A	-280			dBm	
		1		dB	
	P _{OUT} TXOMA TPX _X ER SSRP _{MIN} RIN RIN RXOMA RXP _X Rxsens SRS P _{MAX} RL	P _{OUT} TXOMA -4.0 TPX _X -7.0 ER 3.5 SSRP _{MIN} 30 RIN RXOMA RXP _X -13.7 Rxsens SRS P _{MAX} RL LOS _D	1264.5 - 1277.5 1284.5 - 1297.5 1304.5 - 1317.5 1324.5 - 1337.5 P _{OUT} TXOMA -4.0 TPX _x -7.0 ER 3.5 SSRP _{MIN} 30 RIN 1264.5 - 1277.5 1284.5 - 1297.5 1284.5 - 1297.5 1304.5 - 1317.5 1324.5 - 1317.5 1324.5 - 1337.5 RXOMA RXP _x -13.7 Rxsens SRS P _{MAX} RL LOS _D	10.3125 1264.5 - 1277.5 1284.5 - 1297.5 1304.5 - 1317.5 1324.5 - 1337.5 P _{OUT} 8.3 TXOMA -4.0 3.5 TPX _X -7.0 2.3 ER 3.5 SSRP _{MIN} 30 RIN -128 20 -12 0.25, 0.4, 0.45 0.25, 0.28, 0.4 10.3125 RXOMA 3.5 RXP _X -13.7 RXOMA 3.5 RXP _X -13.7 RXSens -11.5 SRS -9.6 P _{MAX} 3.4 RL -26 1.9 12.3 LOS _D -12 LOS _A -280	TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR

- 1. Transmitter consists or four lasers operating at 10.3 Gb/s each.
 2. Minimum value is informative.
 3. RIN is scaled by 10*log(10/4) to maintain SNR outside of transmitter.
 4. Receiver consists of four photodetectors operating at 10.3 Gb/s each.
 5. Minimum value is informative, equals min TxOMA with infinite ER and maximum channel insertion loss.

(T _{OP} = 0 °C to 70 °C, VCC=3.1 to 3.47 V)						
Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage	Vcc1, VccTx, VccRx	3.1		3.47	V	
Supply Current	lcc			1.13	А	
Link Turn-on Time						
Transmit turn-on time				2000	ms	1
Transmitter (per Lane)						
Single Ended Input Voltage Tolerance	VinT	-0.3		4.0	V	
Differential Data Input Swing	Vin,pp	120		1200	mVpp	2
Differential Input Threshold	RIN		50		mV	
AC Common Mode Input Voltage Tolerance (RMS)		15			mV	
Differential Input Return Loss		Per IEEE F	802.3ba, Sectio	n 86A.4.1.1	dB	3
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Tj9	0.29			UI	
Data Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Eye Mask Coordinates (X1, X2) (Y1, Y2)			0.11, 0.31 95, 350		UI mV	4
Receiver (per Lane)						
Single Ended Output Voltage		-0.3		4	V	
Differential Data Output Swing	Vout,pp	200 300 400 600	550	400 600 800 1200	mVpp	5, 6
AC Common Mode Output Voltage (RMS)				7.5	mV	
Termination Mismatch at 1 MHx				5	%	
Differential Output Return Loss		Per IEEE F	802.3ba, Sectio	n 86A.4.2.1	dB	
Common Mode Output Return Loss		Per IEEE P	802.3ba, Sectio	n 86A.4.2.2	dB	
Output Transition Time, 20%-to-80%		28			ps	
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Eye Mask Coordinates #1 (X1, X2) (Y1, Y2)			0.29, 0.5 150, 425		UI mV	

PSR

50

mVpp

Power Supply Ripple Tolerance

LR4 Electrical Characteristics

Notes:

1. From power on and end of any fault conditions.

2. After internal AC coupling. Self-biasing 100Ω differential input.

3. 10 MHz-to-11.1 GHz range.

4. Hit ratio = $5 \times 10\text{E-}5$.

5. AC coupled with 100Ω differential output impedance.

6. Output voltage can be set using four discrete steps via $I^2\text{C}$. Default is 400-800 mV.

Regulatory Compliance

Transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available from Intel Corporation upon request.

For Product Information

For information about all Intel® Ethernet Products, visit: intel.com/ethernet

Warranty

Intel® Ethernet Optics have a limited warranty of three years from the date of shipment.

Customer Support

For customer support options in North America visit: intel.com/content/www/us/en/support/contact-support.html

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

¹ Optical Module Requirements for Intel® Ethernet Network Adapters with QSFP+ Open Optics Support